
X.Y-Z

Using cryptography as copyright protection for embedded devices
Thomas DETTBARN

Fraunhofer Institute for Integrated Circuits IIS, Erlangen, Germany

Abstract– Copyright protection should not be limited to

content alone. Software, running on an embedded device

and stored in its flash-ROM, is also in danger of being

copied or rebranded, resulting in lost revenues and liability

issues. Cryptography is a way to prevent this, while being

invisible to the customers.

I. Introduction

Overview First, this paper shows a way of protecting
an embedded device against reverse-engineering and
unwanted alteration. The second part is about
personalising each device with a uniqe serial number.
Finally, the Digitial Radio Mondiale (DRM) prototyping
board will be used as an example for a hardware
implementation.
Why cryptography? Software in embedded devices
is stored in non-volatile memory components. Those bear
the danger of being extracted, read and analysed, thereby
disclosing intellectual property. Making it inaccessible to
the customer is no solution, because this also prevents the
installation of updates. If the software is encrypted, it is
shielded against unwanted analysation and alteration. A
customer can still exchange it with an updated version.
Terminology Mathematically speaking, the encryption

of a plaintext x is applying a function f to it:

f(x) = c f−1(c) = x. (1)

Applying the inverse function f−1 on the ciphertext c is
called decryption. Usually, the function f is associated
with a key, so that

fkey1(x) 6= fkey2(x) ∀ key1 6= key2. (2)

In addition of being injective, f should also be non-
structure-preserving and non-commutative. If f and f−1

use the same key, it is called a symmetric cipher, in
contrast to asymmetric ones, where en- and decryption
need two different keys.

II. Embedded devices

Booting of an embedded device Embedded devices
(for example cellphones, PDAs, Internet-routers) are
typically equipped with a flash-ROM, SRAM and a CPU.
Complex ones run an operating system like Linux or
Windows Mobile. More basic systems (like MP3-players)
execute a single program over and over again.

Fig.I: Booting of an embedded device

Because running a program from the ROM is slow and
energy-consuming, its content is copied into the on-chip
SRAM at boot-time. Once there, it can be handled as
intermediate data, which can easily be modified. More
precise: A decryption algorithm can be applied to the
program, before it is executed.
Performing the decryption in software on the CPU is
equally dangerous as leaving the ROM in plaintext:
Enabling an attacker to analyse the algorithm, thereby

identifying the key. Now he can implement the decryption
on his own, giving him the rest of the ROM-image as
plaintext.

III. Cryptographic Coprocessor

It is better to keep the key completely off the CPU,
and the decryption algorithm along with it. This leaves
a hardware implementation as the next logical option:
Once it has been taped out, an integrated circuit’s inner
workings are next to impossible to analyse. Hardware
implementations also have the side-effect of a significantly
shorter execution time. One design possibility is the
creation of an extension to the CPU. Upon execution of
a special assembler operation, this extension takes the
ciphertext and returns it back as plaintext to the CPU
once it has been decrypted. No intermediate results are
accessible by the software. If the CPU is hardwired, a
cryptographic coprocessor can be interconnected using the
memory-controller:

...
......
......
......
......
... ...

......

......

......

......

... ...
......
......
......
......
... ...

......

......

......

......

...
I/O RAM Flash Crypto

...
.
.......
.

R
e
q

......

......

......

......

.......

......

......

......

......

......

......

.............

........

A
c
k

...
.
.......
.

R
e
q

......

......

......

......

.......

......

......

......

......

......

......

.............

........

A
c
k

...
.
.......
.

R
e
q

......

......

......

......

.......

......

......

......

......

......

......

.............

........

A
c
k

...
.
.......
.

R
e
q

......

......

......

......

.......

......

......

......

......

......

......

.............

........

A
c
k

.........................
.
.......
.

......

......

..............

........

············
············
············
············
············
····························

D
a
t
a
O

u
t

··A
d
d
r

··D
a
t
a
I
n

············
············
············
············
············
····························

D
a
t
a
O

u
t

··A
d
d
r

··D
a
t
a
I
n

············
············
············
············
············
····························

D
a
t
a
O

u
t

··A
d
d
r

··D
a
t
a
I
n

············
············
············
············
············
····························

D
a
t
a
O

u
t

··A
d
d
r

··D
a
t
a
I
n

•··
Key

··
············
··

Memory-controller

··
············
·· CPU

············
··

··································Req Adr DataIn DataOutAck

Fig.II: Attaching a crytographic coprocessor to a CPU through the Memory

controller

According to the address, the memory controller redirects
every read- and write-operation by the CPU to the
coresponding device. On software level, an Input-/Output
terminal behaves exactly like a SRAM, except for the
number of clock cycles, given that they all use the exact
same handshaking protocol.
Accessing the coprocessor from software To access
the coprocessor, a programmer has to know which
addresses correspond with it. In Assembler or C a call
would look like this:

sta 0x18700000 r1 //*((volatile int*)0x18700000)=r1;

lda r4 0x1870000c //r4=*((volatile int*)0x1870000c);

Booting For instance, such a coprocessor could aid
the booting process: Upon power-up, the CPUs internal
program-counter is set to an address in the ROM. From
there, it executes an unencrypted program that performs a
for-loop a few bytes from the ROM, calls the coprocessor,
and stores the result in the SRAM. This is continued until
the whole ROMs contents are decrypted. Finally, the
program-counter is set to the SRAM-address.

IV. Serial numbers

Flash-ROMs can be purchased with a serial number. This
serial number is written by the manufacturers and unique,
and it cannot be cloned. This serial number can be
used to personalize each flash-image through a second
cryptographic encapsulation.

Two-key encryption Using the serial number as a
second key changes the encryption chain to

fkey1 ◦ fkey2(x) = c f−1

key2
◦ f−1

key1
(c) = x. (3)

Thus, alteration of the serial number would render the
device useless. However, the serial number is publicly
known. As might be the crypted program c. So the serial
number should always be used as key2. Otherwise, given
that the encryption method f is disclosed, an attacker
could generate his own serial number key3, and write a
program, conducting the operations

f−1

key1
(c) = f−1

key1
◦ fkey1 ◦ fkey2(x) = fkey2(x) = y (4)

fkey3(y) = fkey3 ◦ fkey2(x) = c2 (5)

on the original ciphertext and store key3 along with c2 in
his cloned device. At boot-up, it performs the calculation

f−1

key2
◦ f−1

key3
(c2) = f−1

key2
◦ f−1

key3
◦ fkey3 ◦ fkey2(x) = x. (6)

Even without knowledge of the forementioned hardware
key key1, or the unencrypted program x in the SRAM,
the device will be usable without an ”official” key. The
same problem arises when the decrypting function is
commutative.
To further increase security, the serial number can be
sent to the coprocessor by interconnecting it to the ROM.
Thus, it is impossible to send a fake serial number
to the coprocessor, e.g. by altering the (unencrypted)
bootloader.

V. Example of a cryptographic coprocessor

For the DRM prototyping board, we opted for a
coprocessor based upon the Rijndael AES-128 algorithm.
This algorithm has a time-efficency in Θ(n). It is deemed
to be patent-free.
AES-128 Rijndael is a block-cipher. Encryption takes
16 bytes of plaintext, and transforms it into 16 bytes
of ciphertext, by going through 11 rounds. In each
round, a key (16 bytes long), is iterated and XORed
with the plaintext. The result is fed through 3 distinct
bijective functions (called SubBytes, ShiftRows, MixCols),
to further increase the level of security.

...

......

......

......

. ...
......
......
......
. ...

......

......

......

. ...
......
......
......
. ...

......

......

......

.
...

...

......

......

......

. ...
......
......
......
. ...

......

......

......

. ...
......
......
......
. ...

......

......

......

.
...

...

......

......

......

. ...
......
......
......
. ...

......

......

......

. ...
......
......
......
. ...

......

......

......

.
...

...

......

......

......

. ...
......
......
......
. ...

......

......

......

. ...
......
......
......
. ...

......

......

......

.
...

...

......

......

......

. ...
......
......
......
. ...

......

......

......

. ...
......
......
......
. ...

......

......

......

.
...

...

......

......

......

. ...
......
......
......
. ...

......

......

......

. ...
......
......
......
. ...

......

......

......

.
...

...

......

......

......

. ...
......
......
......
. ...

......

......

......

. ...
......
......
......
. ...

......

......

......

.
...

...

......

......

......

. ...
......
......
......
. ...

......

......

......

. ...
......
......
......
. ...

......

......

......

.
...

..
.
.......
...

...

...............................
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
.......
......
......
......
......
......
......
.......
......
......
......
......
...

.
.......
...

.............................

.............................

In

Out

···

···

·············...·····························

···

···

·············...·····························

·····························
·····························key′1 key′2

Start
Sub

Bytes
Shift
Rows

Mix
Cols key1 Start

Sub
Bytes

Shift
Rows

Mix
Cols key2⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

Fig.III: AES-128 with two keys. Upon completion of all 22 rounds, key1′ and key2′

are used as new keys for the next 16 bytes.

To decrypt the ciphertext, those functions have to be
applied in reverse order.
Hardware-implementation Fig.? shows the schematic
of the coprocessor.

..
......
......
......
.......
......
......
......
......
......
......
......
......
.......
......
......
......
......
......
......
......
.......
......
......
......
......
......
......
......
......
.......
......
......
......
..

............................
......
......
..

............................
......
......
..

............................
......
......
..

............................
......
......
..

............................
......
......
..

......

......

..
......
......
..

......

......

..

..

......

......

.... ..
......
......
.... ..

......

......

.... ..
......
......
....

..
...

............................
......
......
..>1

......................

......................

......................

......................

...
• • •

......................

......................

......................

......................

..
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
...

...........
...........

...........
...........

......................................
··

···

···

···

···

•

•

•

•

············
············
············
············
············
············
············
············
············
············
············
············
············
············
············
············
············
············
············
············
············
············
············
·················· ···• • • •···

···
···

···

··························· ··························· ··························· ···

··
·····
····
····
····
····

··
····
····
····
····
··

key2

··
·····
····
····
····
····

··
····
····
····
····
··

key1

···
····
····
····
·····
····

··
····
····
····
····
··

KeyIt

··
····
····
····
····
··

176Byte Cache

Data

⊕

MixCols−1

ShiftRows−1

SubBytes−1

··
····
····
····
····
··

··
····
····
····
····
··

··
····
····
····
····
··

··
····
····
····
····
··

··
····
····
····
····
·····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
···

··········
···

··························
····
····
·

····
····
····
·

··························
····
····
·

····
····
····
·

··························
····
····
·

····
····
····
·

··························
····
····
·

····
····
····
·

··························
····
····
·

····
····
····
·

··························
····
····
·

····
····
····
·

··························
····
····
·

····
····
····
·

··························
····
····
·

····
····
····
·

··························
····
····
·

····
····
····
·

··························
····
····
·

····
····
····
···

····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
··

··
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
··

····
····
·

····
····
····
·

···················
····
····
·

····
····
····
· ··

Fig.IV: Left: The interface needed to make the AES-128 core compatible to a 32-bit

CPU. Right: Circuit of the core. The inverse functions are. The cache stores the

iterated keys for 11 rounds.

The prototyping board is equipped with an Altera
Excalibur, with an ARM-FPGA-combination in one
package.
The results of the key iteration are stored in 176 Bytes
cache, so that iteration and decryption can be performed
in parallel. To counter side-channel attacks, the output
has to be delayed through an extra register.

VI. Results

Latency Our coprocessor performs one AES-round per
cycle. It uses two keys, so one 16 byte-block needs 22 clock
cycles. At 25 Mhz, this gives a theoretical throughput of
18Mbytes/s. Note that the cache has to be filled for the
first block. In this special case, decryption takes 33 cycles.
Gatecount The implementation on our prototyping
board required the following number of gates:

Table I: Gatecount

Block XOR SubBytes MixCols Cache KeyIt

GateCount 128 12345 12345 12345 12345

ShiftRows is a trivial function in hardware, thereby
resulting in 0 gates. The whole core cumulated in 12345
gates, including 12345 gates for the handshake-interface.
In 65nm technology, this is the equivalent of 0.04mm2

chiparea.
Memory consumption Due to the fact that AES needs
16 byte blocks as input, the unencrypted image had to be
rounded up to the next factor of 16.
Conclusion As this paper has shown, a cryptographic
coprocessor can be implemented within a small chip-area.
It is reasonably fast, uses no extra memory, and prevents
alteration and cloning. On top of that, it is completely
transparent for the standard customer. It would only be
recognized by an attacker.

References

[1] J. Daemen and V. Rijmen, ”The Design of Rijndael”,
ISBN 3540425802, Springer 2001

[2] A. S. Tannenbaum, ”Modern operating systems”,
ISBN 0130313580, Prentice-Hall 2001

[3] A. J. Menezes, P. C. van Oorschot, S. A.
Vanstone, ”Handbook of applied cryptography”,
ISBN 0849385237, CRC Press LLV 1997

[4] Federal Information Processing Standards,
”Announcing the Advanced Encryption Standard
(AES)”, FIPS 197, 2001

