
7.1-2

Using Cryptography as Copyright Protection for Embedded Devices
Thomas DETTBARN

Fraunhofer Institute for Integrated Circuits IIS, Erlangen, Germany

Abstract– Copyright protection should not be limited to

content alone. Software, running on an embedded device

and stored in its flash-ROM, is also in danger of being copied

or rebranded, resulting in lost revenues and liability issues.

Cryptography is a way to prevent this, while being invisible

to the customers.

I. Introduction

Overview First, this paper shows a way of protecting an
embedded device against reverse-engineering and unwanted
alteration. The second part is about personalising each
device with a uniqe serial number. Finally, the Digitial
Radio Mondiale[1] prototyping board will be used as an
example for a hardware implementation.
Why cryptography? Software in embedded devices
is stored in non-volatile memory components. Those bear
the danger of being extracted, read and analysed, thereby
disclosing intellectual property. Making it physically
inaccessible to the customer has the side-effect that it
prevents the installation of updates.
If the software is encrypted, it is shielded against unwanted
analysation and alteration. A customer can still exchange
it with an updated version.
Terminology Mathematically speaking, the encryption

of a plaintext x is applying a function f to it:

f(x) = c f−1(c) = x. (1)

Applying the inverse function f−1 on the ciphertext c is
called decryption. Usually, the function f is associated with
a key, so that

fkey1(x) 6= fkey2(x) ∀ key1 6= key2. (2)

In addition to being injective, f should also be non-
structure-preserving and non-commutative. If f and f−1

use the same key, it is called a symmetric cipher, in contrast
to asymmetric ones, where en- and decryption need two
different keys.

II. Embedded devices

Booting of an embedded device Embedded devices
(e.g. cellphones, PDAs, Internet-routers) are typically
equipped with Flash-ROM, on-chip SRAM and a CPU.
Complex ones run a modern operating system like Linux
or Windows Mobile. More basic systems (like MP3-
players) execute a single program over and over again.
Running a program from Flash is slow. So its content
is copied into the on-chip SRAM by the bootloader.[2]

......

.......

.......

......

.......

...
.......
.......
......
.......
...

.......

.......

......

.......

...
.......
.......
......
.......
...

.......

.......

......

.......

...
.......
.......
......
.......
...

Flash CPU SRAM Flash CPU SRAM·· ·· ··
Fig.I: Booting of an embedded device. The Flash-ROM’s contents are copied into
SRAM, from where they are being executed afterwards.

Decrypting of the Flash At this point, the software
is handled as data: It can be modified. More precise: A
decryption algorithm can be applied to it. Instead of a
program x, a ciphertext c (encrypted with a key keyH)
can be stored in the Flash. This requires the operation

f−1

keyH(c) = x (3)

to be called at boot-time. Without knowledge of the key
keyH , the program x can not be modified, even if c and
f−1 are disclosed.

III. Cryptographic Coprocessor

Performing the decryption in software on the CPU is
equally dangerous as leaving the ROM in plaintext:
Enabling an attacker to analyse the algorithm, thereby
identifying the key. Now he can implement the decryption
on his own, giving him the rest of the ROM-image
as plaintext. It is better to keep the key completely
off the CPU, and the decryption algorithm along with
it. This leaves a hardware implementation as the next
logical option: Once it has been taped out, an integrated
circuit’s inner workings are next to impossible to analyse.
Hardware implementations also have the secondary effect
of a significantly shorter execution time. One design
possibility is the creation of an extension to the CPU. Upon
execution of a special assembler operation, this extension
takes the ciphertext and returns it back as plaintext to the
CPU once it has been decrypted. No intermediate results
are accessible by the software. If the CPU is hardwired, a
cryptographic coprocessor can be interconnected using the
memory-controller:

..
......
.......
.......
.......
... ..

......

.......

.......

.......

... ..
......
.......
.......
.......
... ..

......

.......

.......

.......

...
I/O RAM Flash Crypto

...
.
.......
.

R
e
q

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

..........

........

A
c
k

...
.
.......
.

R
e
q

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

..........

........

A
c
k

.........................
.
.......
.

.......

......

.............

........

·············
·············
·············
·············
·············
·······················

D
a
t
a
O

u
t

··A
d
d
r

··D
a
t
a
I
n

·············
·············
·············
·············
·············
·······················

D
a
t
a
O

u
t

··A
d
d
r

··D
a
t
a
I
n

·············
·············
·············
·············
·············
·······················

D
a
t
a
O

u
t

··A
d
d
r

··D
a
t
a
I
n

·············
·············
·············
·············
·············
·······················

D
a
t
a
O

u
t

··A
d
d
r

··D
a
t
a
I
n•··

Key

···
·············
··

Memory-controller

···
·············
·· CPU

·············
···

··································Req Adr DataIn DataOutAck

Fig.II: Attaching a crytographic coprocessor to a CPU through the Memory controller

According to the address, the memory controller redirects
every read- and write-operation by the CPU to the
coresponding device. Additionally, it implements a
uniform handshaking protocol, so that on software level
an Input-/Output terminal behaves exactly like a SRAM.
Accessing the coprocessor from software To access
the coprocessor, a programmer has to know which addresses
correspond with it. In Assembler or C a call would be:

sta 0x18700000 r1 //*((volatile int*)0x18700000)=r1;

lda r4 0x1870000c //r4=*((volatile int*)0x1870000c);

Booting For instance, such a coprocessor could aid
the booting process: Upon power-up, the CPUs internal
program-counter is set to an address in the ROM. From
there, it executes an unencrypted program that performs a
for-loop a few bytes from the ROM, calls the coprocessor,
and stores the result in the SRAM. This is continued until
the whole ROMs contents are decrypted. Finally, the
program-counter is set to the SRAM-address.

......

.......

......

.......

......

..
.......
......
.......
......
..

.......

......

.......

......

..

...
.......
......
.......
.......
..

......

.......

......

.......

......

..
.......
......
.......
......
..

.......

......

.......

......

..

...
.......
......
.......
.......
..

Flash

”c”
CPU

f−1

SRAM

”x”
Flash CPU SRAM

f−1

··
··································

·······························
·············
·············
·············
···································· ··

Fig.III: A coprocessor, conducting the operation f−1(c) = x is aiding the boot-
process.

IV. Serial numbers

Using a serial number as secondary key changes the
encryption chain to

fkeyH ◦ fkeyS(x) = c f−1

keyS ◦ f−1

keyH(c) = x. (4)

Thus, alteration of the serial number would render the
device useless.
Flash serial numbers Certain types of Flash-ROMs[3]
can be purchased with a fixed serial number. It is written
by the manufacturers and unique, and it cannot be cloned.
Other types can be identified through the Common Flash
Interface at run-time.
Key permutation Though it cannot be read, keyH can
be cloned along with the device. Additionally, keyS and
c can be extracted relatively easy from the hardware. f
might be disclosed as well. This is why the permutation
should never be fkeyS ◦ fkeyH(x). Otherwise, an attacker
could generate his own serial number keyS′, and write a
program, conducting the operations

f−1

keyS(c) = f−1

keyS ◦ fkeyH ◦ fkeyS(x) = fkeyH(x) = y (5)

fkeyS′(y) = fkeyS′ ◦ fkeyH(x) = c′ (6)

on the original ciphertext and store keyS′ along with c′ in
his cloned device. At boot-up, it performs the calculation

f−1

keyH ◦ f−1

keyS′(c
′) = f−1

keyH ◦ f−1

keyS′ ◦ fkeyS′ ◦ fkeyH(x) = x.

Even without knowledge of the forementioned hardware key
keyH , or the unencrypted program x in the SRAM, the
device will be usable without an ”official” key. Effords to
prevent cloning are negated. The same problem arises when
the decrypting function is commutative.
To further increase security, the serial number can be
sent to the coprocessor by interconnecting it to the ROM.
Thus, it is impossible to send a fake serial number to the
coprocessor, e.g. by altering the (unencrypted) bootloader.

V. Example of a cryptographic coprocessor

For a prototyping board, we opted for a coprocessor
based upon the Rijndael-128 algorithm, described in the
Advanced Encryption Standard (AES[4]). This algorithm
has a time-efficency in Θ(n). It is deemed to be patent-free.
Rijndael-128 The algorithm is a block-cipher.
Encryption takes 16 bytes of plaintext, and transforms it
into 16 bytes of ciphertext, by going through 11 rounds. In
each round, a key (16 bytes long), is iterated and XORed
with the plaintext. The result is fed through 3 distinct
bijective functions (called SubBytes, ShiftRows, MixCols).

..

.......

.......

.... ..
.......
.......
.... ..

.......

.......

.... ..
.......
.......
.... ..

.......

.......

....
.................................

...

.......

......

...... ...
.......
......
...... ...

.......

......

...... ...
.......
......
...... ...

.......

......

......
.................................

..

......

.......

..... ..
......
.......
..... ..

......

.......

..... ..
......
.......
..... ..

......

.......

.....
.................................

..

......

.......

..... ..
......
.......
..... ..

......

.......

..... ..
......
.......
..... ..

......

.......

.....
.................................

..

.......

.......

.... ..
.......
.......
.... ..

.......

.......

.... ..
.......
.......
.... ..

.......

.......

....
.................................

...

.......

......

...... ...
.......
......
...... ...

.......

......

...... ...
.......
......
...... ...

.......

......

......
.................................

..

......

.......

..... ..
......
.......
..... ..

......

.......

..... ..
......
.......
..... ..

......

.......

.....
.................................

..

......

.......

..... ..
......
.......
..... ..

......

.......

..... ..
......
.......
..... ..

......

.......

.....
.................................

..
.
.......
...

...

................................
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
...

.
.......
...

.............................

.....................

In

Out

···

···

·············...·····························

···

···

·············...·····························

··key′1 key′2

Start
Sub

Bytes
Shift
Rows

Mix
Cols key1 Start

Sub
Bytes

Shift
Rows

Mix
Cols key2⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

Fig.IV: AES-128 with two keys. Upon completion of all 22 rounds, key1′ and key2′

are used as new keys for the next 16 bytes.

To decrypt the ciphertext, the coresponding inverse
functions have to be applied in reverse order.

Hardware-implementation Fig.V shows the schematic
of the coprocessor. MixCols−1 is an XOR-array, KeyIt and
SubBytes−1 are implemented as ROM lookup-tables.

..

.......

.......

.......

. ...
.......
.......
.......
.............................. ...

.......

.......

.......

.............................. ...
.......
.......
.......
..............................

..

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

...

f−1

..

..

..

.......

.......

......

..

..

......

.......

.......

..

..

.......

......

.......

..

...

.......

.......

.......

..

......................

......................

......................

......................

.............................

.............................

.............................

.............................

DataIn

DataOut

Addr
··········
··········

··
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
···

·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
···

····································

····································

····································

····································

···

···

···

···
·······························

·······························
·······························

·······························

·······························
·······························

·······························
·······························

·······························

·······························

·······························

·······························

··

\\

\\\\\\\\\\\\\
\\\\\\\\\\\\\
\\\\\\\\\\\\\
\\\\\\\\\\\\\
\\\\\\\\\\\\\
\\\\\\\\\\\\\
\\\\\\\\

\\\

///

/////////////
/////////////
/////////////
/////////////
/////////////
/////////////
////////

//

c

x

k
ey

S

···
····
····
····
····
····

key2

···
····
····
····
····
····

key1

···
····
····
·····
····
····

··
····
····
····
····
··

KeyIt

··
····
····
····
····
··

176Byte Cache

Data

⊕

MixCols−1

ShiftRows−1

SubBytes−1

··· ···
····
····
·

····
····
····
·

x

··
····
····
····
····
··

··
····
····
····
····
··

··
····
····
····
····
··

··
····
····
····
····
·····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
··

··········
···

··························
····
····
·

····
····
····
·

··························
····
····
·

····
····
····
·

··························
····
····
·

····
····
····
·

··························
····
····
·

····
····
····
·

··························
····
····
·

····
····
····
·

··························
····
····
·

····
····
····
·

··························
····
····
·

····
····
····
·

··························
····
····
·

····
····
····
·

··························
····
····
·

····
····
····
·

··························
····
····
·

····
····
····
··

····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
···

··
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
···································

··
····
····
····
·····
····

···················
····
····
·

····
····
····
·

···
····
····
·

····
····
····
·

··
··························
····
····
·

····
····
····
·

···
····
····
·

····
····
····
·

··························
····
····
·

····
····
····
·

··························
····
····
·

····
····
····
·

keyS c

keyH

···
··
··
··
·

···
··
··
··
· ···

··
··
··
·

Fig.V: Left: The interface needed to make the Rijndael-128 core compatible to a 32-
bit CPU. Right: Circuit of the core. The dotted blocks are registers, the other ones
represent combinatorical blocks. The cache stores the iterated keys for 11 rounds.
Note that x has to be buffered to counter side-channel attacks.

The results of the key iteration are stored in 176 Bytes
cache, so that iteration and decryption can be performed
in parallel. To counter side-channel attacks, the output is
delayed through an extra register.

VI. Results

Latency Our coprocessor performs one AES-round per
cycle. It uses two keys, so one 16 byte-block needs 22 clock
cycles. At 25 Mhz, this gives a theoretical throughput of
18Mbytes/s.
Gatecount The implementation on our prototyping board
required the number of gates given in table I.

Table I: Gatecount

Block XOR SubBytes−1 MixCols−1 Cache KeyIt
GateCount 223 9043 1485 5835 2534

ShiftRows−1 is a trivial function in hardware, resulting in 0
gates. With some additional optimizations in the synthesis-
stage, the core cumulated in 16879 NAND2-gates in 90nm
technology.
Memory consumption Due to the fact that AES needs
16 byte blocks as input, the unencrypted image had to be
rounded up to the next factor of 16.
Conclusion As this paper has shown, a cryptographic
coprocessor can be implemented with a small gate count.
It is reasonably fast, uses no extra memory, and prevents
alteration and cloning. Moreover, it is completely
transparent for the standard customer. It would only
be recognized by an attacker. New updates can be sent
through insecure open channels (like the internet) and
applied by the customers themselves.

References

[1] EBU, ”Digital Radio Mondiale (DRM), System
Specification (V2.1.1)”, ETSI Standard ES 201980,
2004

[2] A. Sloss, D. Symes, C. Wright, ”ARM System
Developer’s Guide”, ISBN 1558608745, Morgan
Kaufman Publishers 2004, p13

[3] ”Am29LV320D Datasheet”, Spansion, July 11, 2005,
pp30

[4] Federal Information Processing Standards,
”Announcing the Advanced Encryption Standard
(AES)”, FIPS 197, 2001

[5] B. Schneier, ”Applied cryptography”, ISBN
0471128457, John Wiley& Sons 1996

[6] A. J. Menezes, P. C. van Oorschot, S. A.
Vanstone, ”Handbook of applied cryptography”,
ISBN 0849385237, CRC Press LLV 1997

