dMagnetic

Data structures

Thomas Dettbarn dettus@dettus.net

January 24, 2023

Copyright (c) 2022, Thomas Dettbarn
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The Pawn, The Guild of Thieves, Jinxter, Fish!, Corruption, Myth and Wonderland are interactive fiction games copyright Magnetic
Scrolls Ltd, 1984-1990.

Magnetic Scrolls was an interactive fiction developer, based in London UK, active between 1984 and 1990 and pioneer of audio-

visually elaborate text adventures.

Contents

1

Introduction 5
1.1 Nomenclature, 5
Binary File formats 7
2.1 MAGfileformat 7
2.2 GFXfile format, Version1 7
2.2.1 Symbolsinthe HuffmanTable 8
222 BitsintheBitstream 8
223 Decodingthepixels 8
224 Renderingthepixels %
2.3 GFXfile format, Version2 9
23.1 16bit/32bit 10
232 Directory 10
2.3.3 Staticpictures 10
234 Animations. o 11
2.4 DISK1.PIX and DISK2.PIX file format for the MS DOS version . 16
24.1 Indexfile 17
242 DISKI.PIXandDISK2.PIX 17
243 Layer3: XOR e 19
24.4 Translationintopixels. 19
2.5 The Pseudo-GFX3format 20
Objects 21
Strings 23
4.1 Strings2: The HuffmanTable 23
42 Nodes. 23
Dictionary 25
5.1 PlainDictionary 25

CONTENTS

5.2 PackedDictionary 25
Magnetic Windows 27
6.1 Resourcefiles 27
6.2 Thedirectorystructure 27
6.3 Thegamebinaries 28
64 ThegraphiCs 28
64.1 Type7.free 28
642 Typeb,animation., 29
6.5 Wonderlandftitlescreens 0L 29
6.5.1 TITLEVGA 29
6.52 TITLEEGA 30
6.6 MuUsIC 30
Cé4 floppy images 31
7.1 Magnetic Scrolls Directory 31
7.2 EntriesintheFilelist 32
7.3 Co64Pictures 33
7.3.1 Layer I:Huffman 33
7.3.2 Layer 2: Run Length Encoding 34
733 Thebitmap 35
7.34 ColoursforThePawn. 36
7.3.5 Colours for Run Length Encoded pictures 36
7.3.6 Colours for Non Run Length Encoded pictures 37
7.3.7 Rendering 38
738 RGBvalues. 38
7.4 Encryption forthe Gamecode 38
7.4.1 RunlevelEncoding 39
7.5 The pseudo .gfxbformat. 39
7.6.1 Pictureorder., 40
7.6 The beginning of the Huffmantree 40
Atari .STX-Files 41
8.1 The STXfilestructure 41
8.1.1 TheFileHeader 41
8.1.2 TheTrackheader 41
8.1.3 Thesectordescription 42
8.1.4 Thesectorpayload 42

82 Thegamedata 43

CONTENTS

83 TheGameData G i
84 TheHuffmantree H

Amstrad CPC

Q.1 DSKformat
2.1.1 Thediskimage
9.1.2 Thefilesystem

Q.2 Pictures
921 Thelndex.
9.2.2 Thepackedpixeldata
9.23 Renderingthepicture
9.24 The pseudo MaPéformat

9.3 Game and String sectionsinThePawn

9.4 Thescrambledsections
@.4.1 FILET, FILE8: Linearscrambled
9.4.2 FILE 6:Blockscrambling

10 Spectrum128/Spectrum+3 releases

10.1 Findingthe directory
102 Thefiles

11 Acorn Archimedes images

11.1 The RISC OSfilesystem
11.1.1 ADFStypeD-Hugo
11.1.2 Adfstype E-Nick
11.1.3 The directories

TT.2Fles . . .

1T.3 Pictures e
11.3.1 Separating the pictures
11.3.2 Picture orderindJinxter

12 The AtariXL/Atari800 images

121 Thebootloader
122 Thegamesections
12.2.1 Scrambled sections
1222 Codelsection,
1223 Code2section
12.2.4 Dictsection
12.2.5 Location of the Huffmantree
123 The pictures

43
44

45
45
46
47
48
48
48
50
51
51
52
52
52

55
55
56

57
57
57
57
57
58
58
58
58

6 CONTENTS

123.1the RGBvalues 61
12.3.2 the location of the pictures 61

13 Apple lI- .NIB format 63
13T NIBbasics 63
13T.TTracks . . . o o o 63
13.1.2 Addrsection. 63
13.1.3 Datasection, 64

13.2 Payload 65
13.2.1 Magicwords oo 65
18322 Offsets 65
13.2.3 Scrambled sections 67

13.3 CORRUPTION, Pictures 68
183.3.1 Location 68
13.3.2 Applellbasics. 69

14 AMIGA Data format 71

Chapter 1

Infroduction

The purpose of this document is to describe the data structures that
were used by the original programmers of the Magnetic Scroll Adven-
tures. It is less an exhaustive description, but more of a documentation
as on how they where interpreted for the implementation of dMagnetic.

1.1 Nomenclature

The Interpreter implemented a virtual 68000 processor. That particular
CPU has three data types:

BYTE 8 bits
WORD 16 bits
LONG 32 bits

Unless otherwise stated, all values are stored as BIG endian, meaning
that higher bits are stored at a lower address. The value 0x01020304 is
thus stored in 4 consequitive bytes as 01 02 03 04.

CHAPTER 1. INTRODUCTION

Chapter 2

Binary File formats

2.1 MAG file format

The game itself is stored in a file with the ending . mag. It has the following
structure:
Bytes | Description
0.3 “MaSc”, the magic header
4.7 Size of all the sections (the whole file)
8..11 | Size of the header (=42 Bytes)
13 Version. O=The Pawn
1=The Guild of Thieves.
2= Jinxter
3= Corruption, Fish
4= Converted from the Magnetic Windows System
14..17 | Size of the Game code
18..21 | Size of the String 1 section
22..25 | Size of the String 2 section
26..29 | Size of the Dictionary section
30..33 | Pointer to the beginning of the huffman tree
34..37 | Size of the Undo(??) section
38..41 | Undo PC(?7?)

Afterwards the Code, String, Dictionary, Dec, Undo Sections follow.

2.2 GFXfile format, Version 1

Bytes | Description

0.3 “MaPi”, the magic header
4.7 The size of the whole file
8..12 | Indexpointer to Picture O
13..15 | Indexpointer to Picture 1

10 CHAPTER 2. BINARY FILE FORMATS

At the byte that the pointer is denoting, the picture itself is stored as
such:

Bytes | Bits Description
0..1 UNKNOWN
2.3 X1
4.5 X2. the width is X2-X1. width
6.7 height
8..27 UNKNOWN
28..29 RGB value for pixel=0. paly
11..8 | red
7.4 | green
3.0 | blue
31..34 RGB value for pixel=1. paly
58..59 RGB vilaue for pixel=15. palis
60..61 Size of the Huffman table (in bytes) HT
62..65 Size of the Data bit stream (in bytes) BS

Afferwards, a Huffman fable follows. Then a section of bit streams.

2.2.1 Symbols in the Huffman Table

Symbols in the Huffman Table are either non-terminal symbols, pointing
to the next entry, or terminal ones. Terminal entries have bit 7 set.

2 e]s]als]2]0]o
0 index pointer

1 pixel

The data structure is a tree. Decoding the table starts at the very last
one, at Byte 66 + (HT — 1) = ptr.

2.2.2 Bits in the Bitstream

Decoding of the Pixels is MSB first, so it starts at Byte 66 + HT + BS with Bit
7 at the beginning of Bitstream block. If it is a 1, the entry in the Huffman
Table h(ptr) = e is being evaluated, otherwise h(ptr + 1) = e.

2.2.3 Decoding the pixels

If the retrieved entry e is a non terminal symbol, the new pointer ptr is
evaluated as ptr’ = 66 + 2 - e.

If it is terminal symbol, and pizel(e) < 16, the pixel has been decoded
as p; = pizel(e). The pointer is reset to the end of the Huffman table
ptr' =66+ HT — 1

If it is terminal symbol, and pizel(e) > 16, the previous pixel is being used

2.3. GFX FILE FORMAT, VERSION 2 11

again, p; = pj—1. This is being repeated pizel(e) — 15 times. The pointer is
being reset to the end of the Huffmann Table ptr’ = 66 + HT — 1.

Once all the pixels in a line have been decoded, they are being XORed
with the previous line:

p; = Dj D Pj—width

2.2.4 Rendering the pixels

The RGB values for the pixel are stored in the palette. To render it prop-
erly, each pixels RGB value can be drawn as

rgb; = pal(p})

It should be noted that even tough the entries in the palette are 12 bitfs
wide, the red, green and blue values are only € [0..7].

2.3 GFX file format, Version 2

The CD collection games, and Wonderland, used a different format for
storing pictures.

The .gfx files start with a directory, afterwards the images or animations
are being stored as a bitmap-oriented structure.

Picture 2

IT SHOULD ALSO BE NOTED THAT THE DATA FORMAT IS SOMETIMES LITTLE-
ENDIAN INSTEAD OF BIG ENDIAN!

12 CHAPTER 2. BINARY FILE FORMATS

2.3.1 16 bit/32 bit

16 bit values are stored as little endians, some 32 bit values are stored
as MIXED endians.

Bytes | Hex value | Dec value |

little endian 12 3E 0x3el2 156890
mixed endian | 1A 2B 3C 4D | 0x2bla4d3c | 723143996
BIG endian 5A 6B 7C 8D | 0x5abb7c8d | 1516993677

2.3.2 Directory

After the magic header “MaP2”, the size of the directory is stored as 16
bit little endian. Entries are 16 bytes long.

Bytes Description

0.3 “MaP2”

4.5 Length of the Directory (in bytes), BIG ENDIAN
6..21 Entry 1

6..13 | Filename (case insensitive, zero-terminated)
14..17 | Offset within the file (BIG ENDIAN)
18..21 | Length of the picture in bytes (BIG ENDIAN)
22..37 Entry 2

2.3.3 Static pictures

Once the filename has been resolved, the size of the picture in bytes,

as well as ifs offset is known.
Bytes Description

offset+4..0ffset+5 | RGB(0) RGB value pixel O (little endian)
offset+6..0ffset+7 | RGB(1) RGB value pixel 1 (little endian)

offset+36..0ffset+37 | RGB(15) RGB value pixel 15 (little endian)

38..41 | datasize of the bitmap in bytes, MIXED ENDIAN
42..43 width in pixels, little endian
44..45 height in pixels, litfle endian
46..47 UNKNOWN
48..47+datasize | bitmap

48+datasize..49+datasize | “D0O SE” identifies static pictures.

RGB values

RGB values are stored as 12 bits in a 16 bit little endian value. The bytes
53 01 become the value 0x0153, meaning RED=1, GREEN=5, BLUE=3.

2.3. GFX FILE FORMAT, VERSION 2 13

Bitmap

The Bitmap is organized in lines. Each pixel 0..15 can be represented by
4 bits: 3210. In each line, the bifts are lumped together, beginning with
bit O of the first pixel. Then Bit 0 of the second pixel, then bit 0 of the third
and so on. (MSB first).

The bit groups are byte aligned; when the number of pixel in each line
is NOT divisible by 8, the lower bifs of the last byte are padding. After-
wards, the block for bit 1 starts. Then padding, then Bit 2, then padding,
then Bit 3.

The Bitmap for a picture that is 5 pixels wide and 4 pixel requires 16 Bytes:
00000 ppp | 11111 ppp | 22222 ppp | 33333 ppp Linel
00000 ppp | 11111 ppp | 22222 ppp | 33333 ppp Line2
00000 ppp | 11111 ppp | 22222 ppp | 33333 ppp LiNned
00000 ppp | 11111 ppp | 22222 ppp | 33333 ppp LNne4d

In this example: datasize = 16, width = 5 and height = 4.

Decoding and rendering

To decode a pixel p, the bits by, b1, ba, bz have to be combined:

pj = 1:b0(j) +2-b1(j) +4-b2(j) + 8- b3(j)

The resulting p; is the index pointer info the RGB table.

rgb(j) = RGB(p;)

Obviously, rgb; = 02000 is black, rgb; = 02777 is bright white. 02700 is bright
red, 02030 medium green, 0x001 is dark blue.

2.3.4 Animations

Animations consist of a background picture, a number of animation
“cels”, a positioning table for moving objects and a command sequence.

14

Background

Cels

Animation objects

Commands

CHAPTER 2. BINARY FILE FORMATS

The idea is, that one command selects a number of animation objects
that are being triggered. Another commands defines how many frames
are rendered with the selected objects. Each step of the animation has
an X/Y coordinate and a cel number, to select the one to be drawn on
top of the background picture.

Background picture

The format of the background picture is the same as the one for static
pictures, except for the last two bytes.

Bytes Description

offset+5..offset+5 RGB(0) RGB value pixel 0 (little endian)

offset+6..0ffset+7 RGB(1) RGB value pixel 1 (little endian)

offset+36..offset+37 RGB(15) RGB value pixel 15 (little endian)
38..41 datasize oOf the bitmap in bytes, MIXED ENDIAN
42..43 width in pixels, little endian
44..45 height in pixels, little endian
46..47 UNKNOWN
48..47+datasize bitmap
48+datasize..49+datasize | “00 00”?? identifies the picture as background picture.

50+datasize..51+datasize

UNKNOWN

2.3. GFX FILE FORMAT, VERSION 2 15

Animation cels

The cels are sometimes transparent pictures that share their palette with
the background picture.

Numlber of cels

Cel 1

Cel 2

Transparency 2

Cel 3

Obviously, the cel block starts at of fset + 50 + datasize.

Bytes Description
0..1 Number of Cels (Little endian)
2.5 | datasize’ datasize cel 1in bytes (mixed endian)
6..7 width’ width of cel 1 in pixels (little endian)
8..9 height’ height of cel 1 in pixels (little endian)
10..datasize’ + 11 Bitmap
datasizel + 12 widthT Width of the Transparency Mask
datasizel + 14 | heightT Height of the Transparency mask
bitmap format is the same as for the static images. The RGB values are
the same as the background picture’s.

The

When the cel is tfransparent, widthT = width’ and heightT = height’, oth-
erwise UNKOWN.

Transparency

Bytes | Description

datasizel + 12 | widthT Width of the Transparency Mask (little endian)
datasizel + 14 | heightT Height of the Transparency mask (little endian)
datasizel + 16 sizeT Size of the transparency mask in bytes (little endian)

When the animation cel is fransparent, the tfransparent pixels are marked
by a “1” in the transparency mask. The format is MSB first.

16 CHAPTER 2. BINARY FILE FORMATS

When the amount of pixels in the cel picture is not divisible by 8, the last
bits of a line are padding.

For a cel with 5 pixels width and 4 lines height=20 pixels, the transparency
mask occupies 4 bytes:

ttttt | ppp Line T

ttttt | ppp Line?2

ttttt | ppp Line3

ttttt | ppp Line4

whereas for a cel with 3 pixels width and 8 lines height=24 pixels, the
fransparency mask occupies 3 bytes:

ttt Line 1

ttt Line 2

tt|t Lined

ttt Line 4

ttt Line b

tltt Lineéb

ttt Line 7

ttt] Line8

Afterwards, 2 Bytes are UNKNOWN.

Animation steps

Between the cels and the animation steps, 2 bytes are UNKNOWN.,

This block contains the animations. Basically, an animation is a list of cel
numbers, and where to draw them: Each entry denotes the position
and the number of the cel to be drawn within a single frame. The later
the animation in the block, the later it is supposed to be drawn in the
frame. |.E. it is in the foreground layer.

2.3. GFX FILE FORMAT, VERSION 2

17

Bytes Description
0.1 antms Number of animations (little endian)
2.3 UNKNOWN
4.5 stepsl Number of steps for animation 1 (little endian)
6.7 UNKNOWN
8..9 z1;1 X-Coordinate for the first step (little endian)
10..11 y1,1 Y-Coordinate for the first step (little endian)
12..13 celi; Number of the first cel (little endian)
14..15 UNKNOWN
16..17 z12 X-Coordinate for the second step (little endian)
18..19 y12 Y-Coordinate for the second step (little endian)
20..21 celi o Number of second cel (litfle endian)
22..23 UNKNOWN
2 bytes Z1.steps1 X-Coordinate for the last step (little endian)
2 bytes Yi.steps1 Y-Coordinate for the last step (little endian)
2 bytes cel1 steps1 - Number of last cel (little endian)
2 bytes UNKNOWN
2 bytes steps2 Number of steps for animation 2 (little endian)
2 bytes UNKNOWN
2 bytes z9,1 X-Coordinate for the first step (little endian)
2 bytes y2,1 Y-Coordinate for the first step (little endian)
2 bytes cela,; Number of last cel (little endian)
2 bytes UNKNOWN

After the last step in the list, the animation loops back from the begin-
ning. When the number of the cel is = —1, it is an end marker. The ani-
mation is no longer being shown.

z and y denote where the cel is being drawn. Pixels outside the back-
ground image are not being drawn. When the fransparency mask has
a bif set = 1, the pixel is not being drawn.

THE LAST ANIMATION STEP DOES NOT HAVE THE UNKNOWN VARIABLE!

Commands

There are commands for selecting an animation. A command has up
to 3 parameters. Each command and parameter is 1 Byte long.

The command line block begins with the number of commands, stored
as a 16 bit signed integer.

Bytes | Description
0..1 \ Number of commands (littfle endian).

Afterwards, the commands follow:

18 CHAPTER 2. BINARY FILE FORMATS

Command | Parameters Description

“0x00” End Marker

“0x01” animation, start, count | Select an animation

“0x02” frames Render Frames

“0x03” addrsy, addr,s jump to instruction addr

“0Ox04” delaysp. delaymsy pause for delay cycles

“0x05” chance, addris,, addr,s | IN 110N chance, jump to instruction addr
“0x06”" addrsy, chance,s jump 1o addr, if running

Currently, it is unknown if addr is the instruction number, or its offset

Command “0x01” is referring to animation cel z.pimation,start- HErE, animation =

1 is the first animation, start = 1 is the first frame in the animation block.

Rendering the animations

The command list is parsed from beginning to end. In case command
“Ox01" occurs, the animation animation is being selected. The first ani-
mation step being shown will be start. The animation itself will be running
for count frames. Aslong as more “0x01” commands occur, other anima-
fions are being selected.

Command “0x02” will start the animations. A total of frames are being
rendered. The first frame will start with the background image. The an-
imations are being drawn one after another. The celypim,step 1S drawn at
the coordinates zanim,steps Yanim,step:

This is obviously being restricted by the size of the background image.
In case the cel defines a transparency mask, this has to be reflected as
well.

For the next frame step is being increased. When step reaches the end
of the animation list, step loops back to step = 1.

In case celgnim,step == —1., the animation has ended and should be hid-
den.

Once all the frames for Command “0x02” have been rendered, the se-
lected animations will no longer be shown. The next command is being
parsed, until the last command has been finished.

2.4 DISK1.PIX and DISK2.PIX file format for the MS DOS
version

The graphics for the MS DOS version are stored in a total of 3 files: DISK1.PIX,
DISK2.PIX and an individual index file, ending with a 4. (PAWN4, GUILD4,
JINX4, FILE4, CORR4).

2.4. DISK1.PIX AND DISK2.PIX FILE FORMAT FOR THE MS DOS VERSION 19

Within, images are stored as half-tfone images. Meaning, that each pixel
is in fact encoding 2 pixels. On a cathode ray screen, this produced the
illusion of pictures with a richer amount of colours.

24.1 Indexfile

The index file (ending in a 4), contains the offsets into the DISK1.PIX,
DISK2.PIX. It is always 256 bytes in size, and broken down into two sec-
tions. The first section of 128 bytes contains 32 values (signed 32 bit, little
endian), used as offsets into the DISK1.PIX file. The section section uses
the 32 values as offsets intfo the DISK2.PIX file.

Section 1

Section 2

To read the offset, the picnum-th value is read from both sections. One

of them has a —1, the other one has a valid offset.
Section1 Section 2

-1 13
18 -1
-1 23
= -1 42
-1 65

It should be noted that the Title screen is typically picture numiber 30. If
not, it is stored in offset O within the DISK1.PIX file.

2.4.2 DISK1.PIX and DISK2.PIX

Images in this format are encoded in three layers: The Huffman layer,
the Repetition layer, and the XOR layer.

At the offset read from the index file, the image starts with a Huffman
table.

20 CHAPTER 2. BINARY FILE FORMATS

Bytes | Description
0| h Length of the Huffman tree (in bytes)
1..h | H Huffman free
h+1.h+2 | u Unpacked size (16 bit, big endian) in words
h+3.77 Bitstream

The actual size of the unpacked, “unhuffed” buffer is given in 32 bit
words. The size in bytes is 4 x u + 3. Information like the rgb values, the
height and the width is part of the unhuffed buffer.

Layer 1: Huffman

The Huffman tree is being read from the beginning, i.e. byte 1. The en-
fries in the Huffman free are either nodes or leaves. They are stored in
pairs of two bytes. If the bitstream (which is being read MSB first) has a
bit set, the left byte is being evaluated. Otherwise the right one.

In case the evaluated byte has bit 7 set, it is a leaf. The terminal symbol
can be extracted by removing this bit. Thus, terminal symbols in the “un-
huffed” buffer will only be 7 bits wide.

Oftherwise it is a node, a link to the next entry within the tree: To translate
it info a byte address a, the calculation a = 2n; + 1 has to be performed.
Then b, Will be the next leftf node, and b,,1 will be the next right entry.
Once the image has been “unhuffed”, the data starts with a header.

Bytes Description
0 “Ox77" A magic marker
1 m The number of half tone pixels
called “stipples”
2.3 w Width (2x6 bit Big endian)
4.5 h Height (2x6 bit Big endian)
6..21 | rgb(0),...,rgb(15) RGB values (3x2 bit)
22.224+2-m Stipple translation table
22..22+m p Left pixels
224+ m.22+2-m pr right pixels
234+2-m.23+2-m+uxw S Stipple string

w and h are stored as 2x6 bit big endian values, since terminal symbols
in the Huffman tree can only be 7 bits wide. To translate them into “real”
values can be done by

w = byx64+ b3
h = b4>l<64+b5

The rgb values are stored as, MSB first: 2 bits 00, 2 bits red, 2 bits green
and 2 bits blue.
Thus, 0x00 is black, 0x3f is bright white, 0x30 is bright red.

2.4. DISK1.PIX AND DISK2.PIX FILE FORMAT FOR THE MS DOS VERSION 21

Layer 2: Repetitions

The stipple image is a string of stipples

S = {s0,...,8j,...,8z}
This will be translated into
T = {to,...,tgy ..., ty}

withz <yandy=w-h— 1.
Each s; € S can be one of three cases:

e s5; < misdterminal stipple. ¢, = s;

e s; =mand s;_; # mis A very special character. s; will be ignored,
but s; 1 will be used verbatim. ¢, = s;41

e 5; > m and s;_; # m is a special character, denoting a repefition
of the previous stipple. ty, ..., tkrs;—m—1 = tp—1

2.4.3 Layer 3: XOR

The franslated image T has the dimensions of the final image. However,
it has to be XORed over two lines. This extra step resulted in a better
packing ratio for the half tone images.

Uf;

tr ®tp_o. whenk > 2w
tr when k < 2-w

2.4.4 Translation into pixels

The image is a halftone image. Meaning, that each wuy is actually en-
coding 2 rgb values. They can be restored from the stipple translation
tables p; for the left and p, for the right pixel by

a = rgbp (ug)]
Cr = Tgb[p'r<uk>]

22 CHAPTER 2. BINARY FILE FORMATS

2.5 The Pseudo-GFX3 format

Intfernally, dMagnetic is using a MaP3 format to combine the index file
and the DISK1.PIX and DISK2.PIX in a single buffer.

The buffer starts with the magic word “MaP3”. Then there is 4 bytes BIG
endian for the length of the Index section (always =256).

Afterwards, 4 bytes of length for the DISK1.PIX file (BIG endian).
Afterwards, 4 bytes of length for the DISK2.PIX file (BIG endian).

Then the Index file.
Then the DISK1.PIX file.
Then the DISK2.PIX file.

Chapter 3

Objects

Objects are stored in a 14 byte structure.

Bytes | Bits Description
0.4 0..39 | UNKNOWN
5 7.1 UNKNOWN
0 is described
6 7 worn
6 bodypart
5.4 | UNKNOWN
3 room
2 hidden
8..9 parent object
10..13 UNKNOWN

23

24

CHAPTER 3. OBJECTS

Chapter 4

Strings

Strings are Huffrman-Coded. The Decoding table is stored in the Strings2
section of the Mag-File. The Bitstreams are stored in the Strings1 section.

4.1 Strings2: The Huffman Table

MAG-file has the following structure:

Bitsfream Pointers
(WORD)

string2size

The first 256 Bytes are reserved for the Nodes of the Huffman table. Af-
terwards, the Bitstream pointers, stored as 16 bit WORD values. They are
denoting the start index within the Bitstream in the Strings1 section.

4.2 Nodes

The First 256 Bytes contain the Nodes for the Huffman Table. There are
two types of nodes: Non-terminal and terminal ones. Terminal nodes
have the highest Bit 7 sef.

7 o]s]als]2]]o
0 node pointer The index pointers
1 symbol

25

26

CHAPTER 4. STRINGS

Chapter 5

Dictionary

5.1 Plain Dictionary

The dictionary contains the names of the objects. Most of the time, ob-
jects are using a single word. Since version 1(2?), some objects can be
mulfiple words, such as “can of worms” or “one ferg”.

The letters of the word are a..z, the end of a word is marked with Bit 7
being set.

In addition to this, the dictionary itself is broken down into banks. Two
banks are searated by 0x82. The end of the dictionary is marked by a
Ox81.

Version 4 saw the introduction of OxAQ. But its role is unclear to me.

5.2 Packed Dictionary

The MS DOS versions of Jinxter, Fish and Corruption packed the dictio-
nary in a Huffman tree.

The file is as followed:
Bytes | Description

0 | h The size of the Huffman table in bytes
1...h | b The branches of the tree
h+1,h+2 UNKNOWN
h+3,... The bitstream

The branches in the tree are either nodes or leaves (terminal symbols.)
The terminal symbols are signalled by having bit 7 set.

The tree starts at the beginning. ;7 = 0. The bitstream is read MSB first.
If the bit is set, by;o is followed. Otherwise by;41. In case it is a node,
j' = b.In case Bit 7 of b is set, a leaf has been reached.

Within the tree, the terminal symbols are only 6 bits wide. To transform
this info the Plain Dictionary (chapter 5.1), 4 symbols are combined into

27

28 CHAPTER 5. DICTIONARY

3; the fourth symbol contains the 2 MSB from the previous 3 symbols.

L <L L= L

Chapter 6

Magnetic Windows

Wonderland, and the Magnetic Scrolls Collection were published using
the Magnetic Windows system. This system is combining smaller resource
files intfo a larger files. If not otherwise stated, numbers are stored as little
endian.

6.1 Resource files

The resource files are named ONE.RSC, TWO.RSC, THREE.RSC, FOUR.RSC,
FIVE.RSC, SIX.RSC and SEVEN.RSC. For “The Guild of Thieves”, they are
given the prefix G. For “Corruption”, they get a C. “Fish!” is prefixed by
an k.

The files can be seen as one large file.

ONE |TWO| THREE |FOUR| SIX SEVEN

The first 4 bytes are a 32 bit little endian is a pointer p to the directory
within this large file.

6.2 The directory structure

Beginning at the byte p, the directory starts. The Files k =0,...,n — 1.
Bytes Bits | Description
D 16 | Number of entries n.
p+18k+2 | 16 | UNKNOWN
p+18k+4 | 32 | Offseto
p+18k+8 | 32 | Lengthl
p+ 18k +12 | 48 | Name
p+18k+18 | 16 | Typet

29

30 CHAPTER 6. MAGNETIC WINDOWS

The types are one of the following
Type | Description

Void

Tandy

WildCard

Text

Binary

Bitmap

Animation

Tree

Font

SBinary

Cursor

VGA

EGA

O VoONOOUOINMNWN—O

—_
—_

N

6.3 The game binaries

The game binaries are type 4, Binary. They are called wtab, text, code
and index. They are given one of the ¢.,f and g as a prefix.

6.4 The graphics

Graphics are spread out over two types. Type 7, free contains the Huff-
man free. Type 6, Animation, contains the Bitstream, the palette, the
height and the width information.

6.4.1 Type 7, tree

The Huffman tree stores the branches and the terminal symibols as 9 bit
words. Those 9 bits are split up into two sections.

32 Byte Terminal bitmask. Read MSB first. when a bit is set, it denotes a
terminal symbol.

256*1 Byte branch. If the corresponding bit is set, it is a terminal symbol.
Otherwise a branch, a link to the next branch.

If the bit from the bitstream is seft, the right branch is followed (bitmask:
0..0x1f. branch: 0x20...0x11f). Other wise the left branch (bitmask:0x120..0x13f.
branch: 0x140...0x23f).

The byte 0x240 (=576) is the escape character, used in the run level
encoding.

6.5. WONDERLAND TITLE SCREENS 31

6.4.2 Type 6, animation

IT SHOULD BE NOTED THAT THE BITSTREAM IS LONGER THAN THE ACTUAL
PICTURE. (Due to a bug in the original encoder)

4 byte magic

16*2 byte RGB. (0x0Orgb)

2 byte width

2 byte height

2 byte transparency color

2 byte size s

s byte bitstream.

The bitstream is being read MSB first.

Affer the Huffman decoding has been finished, the picture contains
loops. A loop starts with the escape character.

escape + Oxff = escape character
escape + r + X X =the character X X is being repeated r + 4 times

Once the loops have been unrolled, each line is XORed with the previ-
ous one.

Once this has been done, the nibbles need to be swapped.

6.5 Wonderland title screens

Wonderland has two fitle screens. One for the VGA mode, one for the
EGA mode.

6.5.1 TITLEVGA

The title screen for the VGA mode closely resembles a binary version of
the XPM format, sometimes called QDV.

2 Bytes width w (BIG endian)
2 Bytes height h (BIG endian)

1 Byte amount of colors -1 ¢

3 - (c+ 1) Bytes palette 8 bit red, 8 bit green, 8 bit blue

w - h Bytes pixel

32 CHAPTER 6. MAGNETIC WINDOWS

6.5.2 TITLE.EGA

The title screen for the EGA mode has been separted info planes, to
work better with the graphics adaptors of the time. Its resolution is 640x350,
and 4 bits color depth. This information is NOT PART of the file. Since
640 - 350/ (4 - §) = 28000, each plane is 28000 Bytes wide.

The first 16 Bytes are the palette, 6 bit RGB, 00rrggbb.
Afterwards, the next 28000 - 4 = 112000 bytes are the bit masks.

To combine the pixel p[j] value from the jth bit within the 4 planes, one
has to calculate

plj] = 1-b[j+0-8-28000] +
2-b[j+1-8-28000] +
4-b[j+2-8-28000] +
8-b[j + 3 -8-28000]
| 0 0 00 0000=0x00 | Plane 1 (28000 Bytes, starting with 0x00)
\ \
| 0\ 1\ 01 0101=0x55 | Plane 2 (28000 Bytes, starting with 0x55)
\ \
| 0\ \ 0\ \ 00 0000=0x00 | Plane 3 (28000 Bytes, starting with 0x00)
LA\ LA\
L\ o \ \ 101010=0xAA | Plane 4 (28000 Bytes, starting with OxAA)
AR R ARR
[1000] [01 0 0]
=0x8 =0x2

In this example, the planes are being read MSB first. For rendering the
first 8 pixels, the RGB values from Byte 8 and Byte 2 are being chosen.

6.6 Music

The Music for Wonderland is stored in the files “t-cat”, “t-croq”, “t-crt”,
“t-madt”, “t-mus”, “t-pal” and can be played back as Standard MIDI
data. (With timidity, for example).

Chapter 7

Cé4 floppy images

The .d64 files are a images of Commodore Cé4 floppy disks. It contains
the sectors of the floppy in consequitive order. Each sector is 256 bytes
long. They are grouped in tracks. Depending on its location on the orig-
inal floppy, each track holds between 17 and 21 sectors.

Since on a circular disk, the outer tfracks are in fact longer than the inner
tfracks, the amount of sectors per track is as followed:

Tracks | Number of sectors | Total amount | Offset

1 2 3
B F 8
9 J

1-17 21 357 0x00000
18-24 19 133 O0x16500
25-30 18 108 Ox1EAQO
31-35 17 85 0x25600

Magnetic Scrolls floppies have 35 tracks. Track 18 is the default directory
frack. Large data blocks, starting on Track 17, are being continued on
Track 19.

7.1 Magnetic Scrolls Directory

The Magnetic Scrolls games use an efficient datastructure for the game
data. Its header is stored in Track 1. The sectors contain the following
information:

33

34 CHAPTER 7. C64 FLOPPY IMAGES

Sector | Contains

0 UNKNOWN
1 A Magic word, for each game (among other things)
2 A list of file pointers
The magic word can be used to detect the game.
Magic word | Game
ARSE Jinxter
COKE Corruption
GLUG Fish!
GODS Myth
PAWN The Pawn
SWAG The Guild of Thieves

The list of entries can be used to find the Files. Each entry is 4 bytes long.
So the maximum number of entries in the list is 64.

Each entry is 4 bytes long:

Byte | Purpose Comment
0 Track number =1: First Track
1 Sector number =0: First Sector
2 Length (in sectors) | =0: Unused entry
3 Side =0: Both sides
=1/2: only one side of the floppy (see below)

There are instances when the length of the file is not consistent with the
entry in the list.

The “Side” entry is used to distinguish between the front side of the
floppy or the back side. That does not necessarily mean that 1 is the
Front and 2 is the Back. It is rather a mechanism to determine the be-
ginning of the list of pictures.

7.2 Entries in the File list

The position for the game data (See chapter 2.1) Codel, Code2, String1
and String?2 is fixed. The position of the pictures vary with each game.

Entry number | File name

1 Code 2. Second hallf of the Code block

2 String1

3 String2

4 “Cameo” file. A set of thumbnails.

5. Pictures. THE FIRST ENTRY IS NOT THE FIRST PICTURE.
Last entry Codel. first half of the code block

The first picture (Picture 0) is the first one with Side=1, which might not
necessarily be Entry 5.

The String1 and String2 sections are stored the same way as in the MAG

7.3. C64 PICTURES 35

files. Code 1 and Code 2 are sometimes encrypted and run length en-
coded.

7.3 Cé64 Pictures

The pictures for the C64 version have a resolution of 160x152 pixels. The
Files in the D64 image are a packed Bitmap (6080 Bytes), and colour
information (762, 1140 or 1520 Bytes, depending on the formar).

The first three bytes within the image are always Ox3E 0x82 0x81.

The bytes are as followed:

Byte | Value Description
O | Ox3E UNKNOWN
11 Ox82 | ty | Left Branch
2 | 0x81 | to | Right Branch

127 tes | Left Branch

128 tgs | Right Branch
129 bg | Bit stream, MSB first

130 b1

7.3.1 Layer 1: Huffman

Decoding of the Bitstream starts with the Huffman Tree at ¢y and by.

The bitstream is being read MSB first, so for the bytes 77 5D, the bit se-
quence would be 01110111 0101 1101. NOTE that bit streams can cross
Track borders, and Track 18 must be skipped. Therefore, after reading
sector 21 at the end of track 17, the next sector would be track 19, sec-
tor 0.

If the bit is set, the left branch is being followed. If the bit is not set, the
right branch.

If the branch has Bit 7 set, it is being followed to the next branch. If bit 7 is
0, itis a leaf, a ferminal symbol. The free is being reset to the first branch
to.

In other words: Let 5,(j) be the left branch, located at Byte 2- j + 1. And
Br(7) be the right branch, located at Byte 2 - j + 2. S; be the decoded
terminal symbols.

Then:

1. 7:=0, k:=-1,1:=1, m:=0z0
2. Shift m right by 1 bit

36 CHAPTER 7. C64 FLOPPY IMAGES

ifm=0thenk:=k+1, m:= 0280

if (bx AND m) then 3 := ,(j) else B := 5, (j)

if (8 AND 0280) then j := 3 AND 0z7f. Goto 2
j =0, 8 := (8 AND 0z3f).

l:=1+1

© N o o A~

Repeat at 2 until the Huffman tree has been decoded

Terminal symbols are only 6 bits wide, so 4 consequitive terminal symbols
Sj, Sj+1, Sj+2, Sj+3 are being combined into 3 Bytes By, By+1, Bryo in
the following way:

O0AAAAAA | 00BBBBBB | 00CCCCCC | 00aabbcc

Sj | S| Sj+2 | Sj+s
4
GGAAAAAA | bbBBBBBB | ccCCCCCC
By, | Bry1t | B2

(see also chapter 5.2)
The first two bytes By, B; have a special meaning:

¢ In THE PAWN, they are colours

¢ In any other game, By = 0 means that the run length encoding is
not being applied. B; is the “background” colour.

7.3.2 Layer 2: Run Length Encoding
If the picture is run length encoded, B, determines the amount [of Run

Length Codes. Bytes 3, - - -, 3+1 are the codes. Their position is important.

R = [B37"'7B3+m7"'7B3+l]

- [rlu"'vrmv'”7rl]

If B, = r,, forany k& > (54 1) occurs, Bi_1 is being repeated m times:

B = By
Bry1 = B

Bipim—1 = Br_

7.3. C64 PICTURES 37

7.3.3 The bitmap

The bitmap is always 6080 Bytes long. For the Pawn, this was followed by
64 Bytes padding, bringing it up to 6144 Bytes.

e Ifthe file was run length encoded, those are the bytes By, . . ., Bgossti-

¢ If the file was not run length encoded, the bitmap is stored in the
bytes Bs, ..., Bgosi.

For the sake of simplicity, the 3,, is being infroduced:

Byyi ... Beoss+i
By ... DBegosi
U
Bo - Beoro

Each byte 3, contains information for 4 pixels.

Eight bytes 8,,,. .., Bmsr cOntain an 4x8 Block. Each 4x8 Block can hold
up to 4 colours, by assigning them to pairs of 2 bits.

Each m can be translated info coordinates x, y, according to the follow-
ing formula:

y(m) = L))ZLOJ -8 +m modulo 8

x(m) = ({ZLJ modulo 40> -4

Four consequitive pixels z, x + 1, = + 2, = + 3 will be given colours deter-
mined by pairs of bits in 3,,, (MSB first):

Bits of 8,, | 76 54 32 10
x-coordinate | z(m)+0 xz(m)+1 z(m)+2 a(m)+3

For example, the bytes 1E 67 56 F2 81 00 EF 55 42 represent the following
bitmap:

38 CHAPTER 7. C64 FLOPPY IMAGES

1Ef OO | O1 | 11 | 10| O1 | OO | OO | 10 |42
67/ 01 | 10 | O1 | 11
56/ 01 | 01 | O1 | 10
F2 11 | 11 | 00 | 10
81 10 | 00 | 00 | O1
00| 00O | 00O | OO0 | OO
EF| 11 | 10 | 11 | 11
85 01 | 01 | 01 | Ol

7.3.4 Colours for The Pawn

The bitmap is padded by 64 Bytes.

Afterwards, Byte fg144 is the beginning of a colour map ~o, . .., v759. One
graphic mode on the Cé4 allowed a 4x8 block to have one of two
colours, determined by the byte ~,,, or one of two colours determined
by fixed memory locations, 0xD021(?) and 0xD022(?).

The picture File contains the content for those memory locations in the
first two bytes By and B;.

To translate n into the upper left coordinates z, y for a block, the follow-
ing formula can be used:

v = |8
z(n) = (nmodulo 40) -4

The bit pattern within this block is being translated into a colour by the
following table:

Bit pattern | Colour

00 Bo, Bt 3.0
01 n, Bit 7.4
10 . Bit 3.0
1 By, Bit 3.0

7.3.5 Colours for Run Length Encoded pictures

All games other than The Pawn used a graphic mode. One where within
a 4x8 block, the 4 colours were determined by two bytes ~,, and ~,,+760-
On top of that, the 64 Bytes padding was no longer used, therefore Byte
Beoso is the beginning of the color map ~o, . - ., Y759, Y760, - - - s Y1519-

7.3. C64 PICTURES 39

To translate n intfo the upper left coordinates x, y for a block, the follow-
ing formula can be used:

y(n) = MBJ -8
z(n) = (nmodulo40) -4

The bit pattern within this block is being franslated into a colour by the
following table:

Bit pattern | Colour

00 B, Bit 3.0
01 Vni760., Bit 7.4
10 Yn+760+ Bit 3..0
1 ~n, Bit 3..0

7.3.6 Colours for Non Run Length Encoded pictures

Allgames other than The Pawn used a graphic mode. One where within
a 4x8 block, the 4 colours were determined by two bytes I';, and .

Withp € 0,...,379and ¢ € 0,...,759.
Byte Bgoso is The beginning of the color map Ty, . .., I's59,70, - - -, Y759

To translate p and ¢ into the upper left coordinates z, y for a block, the
following formula can be used:

ylg) = MIOJ -8
z(q) = (g modulo 40) -4

p1= BJ pa = q modulo 2

The bit pattern within this block is being translated into a colour by the
following table:

Bit pattern | Colour
00 By, Bit3..0
0T vq. Bit 7.4
10 7q. Bit 3.0
11 I, Bit7.4,ifps=0
11 r,,.Bit3.0,ifpy =1

40 CHAPTER 7. C64 FLOPPY IMAGES

7.3.7 Rendering

Start with p = 0,m = 0,¢ = 0. Top left corner (xz = 0,y = 0). Determine
the four colours, determine the Bit pattern in the 4x8 Bit block. Draw the
first four pixels. Then draw the four benath it. Repeat 8 times. Draw the
4 pixels right of it. Then beneath. Repeat everything 20 times. Then go 8
pixels down. Start at the left side (x = 0)...

The last byte from the Bitmap should be at 6080. The resulting image has
a resolution of width x height = 160x152.

7.3.8 RGB values

Brix, an expert in C64 programming, suggested the following RGB values
for the 16 colours:

Colour Name RGB value

0x0 BLACK 0,0,0 EEE—
Ox1 WHITE 255,255,255

0x2 RED 129,51,56 —
Ox3 CYAN 117.206,200

Ox4 PURPLE 14260151 s—
Ox5 GREEN 86,172,77 e
Ox6 BLUE 46,44,155 —
Ox7 YELLOW 237,241,113

0x8 ORANGE 142,80,41 [—
0x9 BROWN 85,56,0 EE—
Oxa LIGHT RED 196,108,113 s
Oxb DARK GRAY 74,74,74 —
Oxc GRAY 123,123,123 s
Oxd LIGHT GREEN 169,255,159

Oxe LIGHT BLUE 112,109,235 s
Oxf LIGHT GRAY 178,178,178

7.4 Encryption for the Game code

To harden the copyright protection, the game code for the virtual mao-
chine uses a simple encryption algorithm.

Each block B; = [by,...,bp,...,bss| within the code File is SOMETIMES
encrypted. The application of the encryption can be determined by
looking at the first two bytes of the CODE block. This has to be 0x49
OxFA. Every game starts with those two, they are the equivalent of a LEA
instruction.

7.5, THE PSEUDO .GFX5 FORMAT 41

It can be decrypted with the following algorithm:

1. Select a pivot p =0z ff XOR j modulo 8.
2. If p#255: Foreach k € (p+1),...,255 perform b, = by, XOR b,
3. Afterwards, foreach k € p —1,...,0 perform bj, = by, XOR by (,xOR0xff)

4. Finally, revert B;: Foreach k € 0, ..., 255 perform b, = bass_x

Perform the same operations on the next block B; ;.

7.4.1 Run Level Encoding

To preserve memory, the game code has been packed by run level en-
coding, but only for bytes having the value 0x00. The first two bytes of
the file are the length of the encoded file in BIG endian format. Thus,
the first byte by needs to be multiplyed by 256 and added 1o the sec-
ond byte b;.

Afferwards, if the byte b; = 0200, byte b;; determines the amount of
0xQ00.

For example, if the byte sequence is BE OC 00 03 09, the decoded se-
qguence becomes BE OC 00 00 00 09.

7.5 The pseudo .gfx5 format

The pseudo .gfxd format, used internally by dMagnetic has a 133 byte
header.

Bytes Description
0.3 ”MaP5” Magic word
4.7 Offset to picture 0 (As the VM expects it, BIG endian)

8..11 Offset to picture 1 (VM view, BIG endian)

128..131 | Offset to picture 32

132 Version of the Game (0=Pawn)
Starting with Byte 133, the image data follows. It is simply a copy of the
sectors of the picture files. They are ordered in the same way they ap-
pear in the .dé64 image.

1. Side (side 1 first)
2. Track (Track 1 first)

3. Sector (Sector 1 first)

42 CHAPTER 7. C64 FLOPPY IMAGES

7.5.1 Picture order

Except for Myth, the order of the pictures on the floppy images is dif-
ferent from the ones in other releases, and different from the ones the
virtual machine expects. In fact, they have 1o be reordered.

The actual order is as followed (O=the first image on side 1:)

Jinxter 4,0,5,6,7,N/A,8,1,9,10, 11,12, 13, 14, 15, 16, 17, 2, 3, 27, 18,
19,20, 21, 22,23, 24, 25,26, 27

Corruption 24,8, 9,25, 10,13, 15,16, 17,1, 18,23,21,6,5,4,12, 14,2, 3,
11,20,7,22,19,0

Fish! 3,21,8,11,18,16,17,4,2,5,1,6,9,10, 14,20, 22,24, 25, 0, 15, 23,
7.19,13,N/A, 26

Myth 0,1,2,3

The Pawn 4, 26, 13, 23,0, 8,29,5,18,19,3,.9,12, 11, 16,22, 17,21, 28, 6,
27,25,24,2,1,20,14,7,15,10

The Guild of Thieves 9, 17,20, 0, 26, 19, 11,12, 4,5,2, 13, 14,8, 6, 1, 15,
16,3.24,21,28,22,25,18,23,7,10,27

(Some pictures were not available in the Cé4 release. (N/A))

For example, whilst playing JINXTER, when the virtual machine tries to
load picture number 0, it actually has to load the fifth picture that can
be found in the .d6é4 images.

7.6 The beginning of the Huffman tree

The strings are Huffrnann encoded. The tree to decode it can be found
at the following offsets:

Game Decoding Offset
Jinxter 0x13100
Corruption 0x16100
Fish 0x14e00
Myth 0x08b00
The Pawn 0x0b400
The Guild of Thieves | 0x0f100

For “The Pawn” and “The Guild of Thieves”, this is the beginning of the
second string sections.

It differs for the other games. Here, it can be found by looking for sector
borders, since the tree is sector aligned. The previous sector must end
with 0x00 0x00 0x00. Each tree in each game starts with 0x01 0x02 0x03.

Chapter 8

Atari .STX-Files

STX is a disk image format which preserved the original structure. This
allows for the copyright protection to stay intact, since those sometimes
where checking bad sectors and fiming offsets when reading tracks
from the floppy.

8.1 The STX file structure

| found the description under this link: http://info-coach.fr/atari
/documents/_mydoc/Pasti-documentation.pdf.

The numbers are from the intel world, so they are little endian.

8.1.1 The File Header

The files start with a header in the first 16 bytes:

Bytes | Length | symbol | Description
0.3 4 0x52 0x53 0x59 Ox00="RSY" the magic word
4.5 2 Version of the File
6..7 2 Tool idenfifier.
8..9 2 Reserved 1
10 1 t Track Count (mostly 82)
11 1 revision
12..15 4 Reserved 2

8.1.2 The Track header

After the file header, ¢ tfracks follow. Each track starts out with 16 bytes
frack header:

43

44 CHAPTER 8. ATARI .STX-FILES

Bytes | Length | symbol | Description
0.3 4 r(t) record size, the bytesize for the frack
4..7 4 f(t) size of the fuzzy mask
8..9 2 s(t) number of sectors for this track
10..11 2 Flags of the track
12..13 2 Length of the frack image
14 1 Track number
15 1 frack type

The offset of the track o(t) within the .STX file can be calculated itera-
fively, with

0(0) = 16
o(t) = ot—1)+r(t—1)

STX may contain a fuzzy mask, which has a size of f(t) bytes. The STX
files | encountered did not have one.

8.1.3 The sector description

After the track header, at position o(t) + 16, the sector headers can be
found. There are s(t) many.

For each sector o € {0,...,s(t) — 1}, the description is 16 bytes long.

Bytes | Length | symbol | Description
0.3 4 | d(t,o) | Data Offset
4.5 2 bit position
6..7 2 Read time

8 1 ID track
% 1 ID head
10 1 ID number
11 11 b(t,o) | IDsize (2=512 bytes, 3=1024 bytes)
12..13 2 ID CRC16
14 1 FDC flags
15 1 reserved

In the STX files | encountered, the ID field is not consistent with the de-
scription within the STX standard. This might be a copyright protection.

8.1.4 The sector payload

The offset w(t, o) of the payload for a sector o on track ¢ starts at one of

w(t,o) = o(t)+d(t, o)
w(t,o) = ot)+ f(t)+d(t, o)

8.2. THE GAME DATA 45

To me, it is unclear which one of the two is correct.
The amount of bytes a(t, o), however, is mostly either 512 or 1024:

e «(t,0)=128, when b(t,0)=0
1

e o(t,0)=512, when b(t, 0)=2

(t,0) (

e at,0)=256, when b(t,o)=
(t,0) (
(t,0)

e «(t,0)=1024, when b(t,o)=3

In other words:

alt,o) = 128.2b%0)

8.2 The game data

The game data is stored in fracks with 1024 byte long sectors. For ob-
scure reasons, the beginning of the game data is actually on the last
frack, and continues on the former ones. On top of this, the sectors are
not being read linearly.

The correct order to read the game data is by calculating the offsets in
the following scheme:

0(79,2) | @(79,3) | w(79,4) | (79,0 | w(79,1)
w(78,3) | w(78,4) | w(78,0) | w(78,1) | w(78,2)
w(77,4) | w(77,0) | w(77,1) | w(77,2) | w(77,3)
w(76,0) | w(76,1) | w(76,2) | w(76,3) | w(76,4)
w(75,1) | w(75,2) | w(75,3) | w(75,4) | w(75,0) | = &
w(74,2) | w(74,3) | w(74,4) | w(74,0) | w(74,1)
w(73,3) | w(73,4) | w(73,0) | w(73,1) | w(73,2)
w(l,4) | w(1,0) | w(1,1) | w(1,2) | w(1,3)

Note: The first sector on each track ¢t can be calculated as

4 — (t+3) mod 5

Track 0 contains the bootloader and a README file.

8.3 The Game Data G

Once the game data bas been reordered, the first 256 bytes contain 32
index pointers as BIG endian numbers.

46 CHAPTER 8. ATARI .STX-FILES

They point to the following positions within G:

Number Bytes | Description
0 0.. 3 | UNKNOWN (the unhuffer maybe?)
1 4..7 | Huffman tree H
2 8..11 | Picture 0
3 12..15 | Picture 1

31 | 252..255 | Title screen (?)
The pictures are the same format as in the .GFX1 file, sans the header.

8.4 The Huffman tree H

Apparently, the Huffman tree contains the game code and the string
sections. Each leave is 4 bytes wide. 2 bytes left, 2 bytes right. Terminal
symbols have bit 8 set,

0..1 Root index of the free

2..1017 The Huffman tree

1030.. The Bitstream

The left branch is at 4*idx+0, the right branch at 4%*idx+2.

The root of the free is at the end. The Bitstream is being read MSB first.
If the bit is set, the left branch is being followed. Otherwise the right
branch.

Chapter 9

Amstrad CPC

9.1 DSK format

The standard format to store Amstrad floppy images is the DSK format.
Essenfially, it is a verbatim copy of the floppy disks, albeit with the sector
interleaving intact. Additionally, each frack is given a header with de-
tails such as the size of each sector etc.

Please not that since the Amstrad CPC is a little endian machine, the
values are little endian_as well.

Track O data

Track 1 data

The file header and each track header has a size of exactly 256 bytes.
After the meaningful data, they are padded with 0.

47

48 CHAPTER 9. AMSTRAD CPC

9.1.1 The disk image

The format of the File header is as followed:

Bytes | Length | Symbol | Description

0.32 |33 Magic word: Either ‘MV.." or "EXTENDED.
33..47 | 15 Name of the creator

48 1 nr Number of tracks

49 1 ng Number of sides

50..51 | 2 br Bytes/track (redular DSK)

52.xx | np-1 b (t) 256 Byte blocks/track (extended DSK)

With this information, the offset O to the track header frack ¢t on the side
s can be calculated with one of the following formulas:

O(t,s) = 256+ (ng-t+s)-br
O(t,s) = 256+ (ng-t+s)-bp(t) 256

(Depending on whether it was an extendes DSK image or not).
The Track header looks like this:

Bytes | Length | Symbol | Description

0..11 12 Magic word

12..15 | 4 unused

16 1 t Track ID

17 1 s side ID

18..19 | 2 unused

20 1 Br Size indicator for the sectors
21 1 Ny Number of sectors

22 1 gap3 length

23 1 Filler byte

The actual number of bytes B for a sector is calculated by

B = 2frtT

The filler byte can be used to detect unformatted sectors.
Afterwards, n, - 8 bytes of sector headers follow:

Bytes | Length | Symbol | Description
1 Track number
1 Sector number
1 i(o) Sector ID, important for deinterleaving
1 By Sector Size, might be different from gp
1 FDC status]
1
2

FDC status2
unused

CUNWN—O

9.1. DSK FORMAT 49

The sectors are organized the same way they would be on a floppy disk,
meaning, they are interleaved. To read the data lineraly, they have to
e deinterleaved. The actual order of the sectors varies from Disk to Disk,
but it can be determined by the sector ID within the sector Headers.

In consequtive order, the tfrack data starts with the sector ¢ that has the
lowest i(o).

The offset to the frack data in sector o on track ¢ on side s is

Qt,s,0) = O(t,s)+256+B-0

9.1.2 The file system

Once the sector data from the DSK image has been converted into a
consequitive, linear image file, it represents a CPM file system.

The CPM file systems for Magnetic Scrolls Files have a block size of 1024
bytes. The first 2 blocks are reserved for a directory.

Directory entries are 32 bytes long.

Bytes | Length | Symbol | Description

0 1 UNKNOWN

1..11 11 Filename (8 Bytes+3 Bytes extension)
12..15 | 4 EX,S1,52,RC | File size pointers?

16..31 | 16 16 Block pointers

Multiplying the block pointers by 1024 gives the offset within the file sys-
tem.

Since a directory entry can address at most 16 blocks, files larger than
16 kByte are being split over multiple entries, all with the same filename.
To read the full file, one has to read the blocks in the given order. If the
block number is =0, the file is complete.

The filenames can be used to determine the game. It is the same for
each file, followed by a number

GAME PREFIX
The Pawn PAWN
The Guild of Thieves | GUILD
Jinxter JINX

Corruption CORR

So far, | was able to discover the following files and their roles:

50 CHAPTER 9. AMSTRAD CPC

PAWN GUILD Jinxter | CORR Description

PAWNO | GUILDO | JINXO | CORRO || The interpreeter

PAWNT | GUILD1* | JINX1* | CORRT* || The code section

PAWN2" | GUILD2 | JINX2 | CORR2 | Second part of the strings

PAWNS3 | GUILD3 | JINX3 | CORR3 First part of the strings

PAWN4 | GUILD4 | JINX4 | CORR4 || Picture index

GUILDS | JINX5 | CORR5S Pictures on the second disk

GUILD6* | JINX6* | CORR6* || The code section, continued

GUILD7 | JINX7 CORR7 Pictures on the first disk

JINX8* | CORR8* || The dictionary

" Huffman coded, see chapter 9.3 for description

* Scrambled, see chapter 9.4 for a description

9.2 Pictures

Note that | wrote this chapter before | had a look at THE PAWN. For
this game, the pictures are stored in a single File: PAWNA4. It starts with 2
bytes UNKNOWN, the index (with little endian values). Then the Pictures
as Tree/Bitstream pairs.

9.2.1 The Index

The index to the pictures can be found in the files ending with 4, so
GUILD4, JINX4. The entries are 4 bytes each: 3 for the offset with either
FILES or FILE7, and 1 byte to determine which one; if the last byte is =0xff,
it is in FILES. If it is =0Ox00, it is in FILE7.

9.2.2 The packed pixel data

Once the offset within either FILES or FILE7 is known, the pictures are,
once again, Hufmann-Encoded.

The structure is as followed:

Length | Symbol | Description

1 Byte t Length of the free
2-t+2Bytes | T The Tree

? bytes B The Bit stream

Decoding starts with tree index i = 0.
The bit stream is being decoded MSB first. In case the bit is set, ¢ =
T (2-i+0)is being evaluated. Otherwise t =T (2 -4 + 1).

9.2. PICTURES 51

Terminal symbols have bit 7 set, so if t < 128 = ¢/ = .
Oftherwise, the terminal symbol = = ¢ — 128.

There are three kinds of terminal symbols: Palette, Codes and Loops.
The first 14 symbols are the palette wy...m14. They are being used directly,
so m; = 7. Afferwards, only codes and loops occur.

The codes make up terminal symbols 7 between 0200 and 0x0f. Loops
are between 0210 and 0z7f. They repeat the last code 7 — 16 times.

It takes two codes 7y and 7, to calculate the actual output byte b(j), by
means of a the following codebook:

x | c(x)
0 | Ox00
1 | Ox40
2 | Ox04
3 | Ox44
4 [0x10
5 | Ox50
6 | Ox14
7 | Ox54
~ 8 | 0x01
9 | Ox41
10 | Ox05
11 | Ox45
12 [Ox11
13 | Ox51
14 | Ox15
15 | 0x55

The formula is

b(j) = 2-c(m0)+c(m)

It can easily be seen that this way all possible values for b(j) can be cal-
culated. Note that in a loop, only 7; is being reused.

Once all the bytes b(0)...6(11599) have been decoded, they need to be
descrambled over 2 lines. Since each line for a picture with a resolution
of 160x152 is represented by 80 bytes, the operation would be:

V@) = b(i) @ b(i — 160)
(3 = (3 (3
1=160

52 CHAPTER 9. AMSTRAD CPC

9.2.3 Rendering the picture

Pixel deinterleaving

The Amstrad used interleaved pixel values. Two pixels are being com-
bined in a byte. To get the pixel value, calculate

PO =((b>>7)&0x1)<<0;
p0|=((b>>3)&0x1l)<<1;
pO|=((b>>5)&0x1)<<2;
pOl=((b>>1)&0x1)<<3;
pl =((b>>6)&0x1)<<0;
pll=((b>>2)&0x1)<<1;
pl|=((b>>4)&0xl)<<2;
pll=((b>>0)&0x1)<<3;

Those two pixels py and p; are translated into the rgb lookup by the
following formula

0 : pz=0
r(pe) = 26 @ py=1
Tp,—2 : oOtherwise

RGB values

The Amstrad CPC had 27 colors to choose from, out of which 16 could
be displayed at the same fime.

9.3. GAME AND STRING SECTIONS IN THE PAWN 53

Colour Name RGB value

0 BLACK 0,0,0 e
1 BLUE 0,0,128 —
2 BRIGHT BLUE 0,0, 255 e
3 RED 128,0,0 I
4 MAGENTA 128,0,128 —
5 MAUVE 128, 0,255 —
6 BRIGHT RED 255,0,0 e
7 PURPLE 255,0,128 e
8 BRIGHT MAGENTA 255, 0,255 e
9 GREEN 0,128,0 —
10 CYAN 0,128,128 —
11 SKY BLUE 0,128,255 —
12 YELLOW 128,128,0 I
13 WHITE 128,128,128 s
14 PASTEL BLUE 128,128,255

15 ORANGE 255,128,0

16 PINK 255,128,128

17 PASTEL MAGENTA 255,128,255

18 BRIGHT GREEN 0.255,0

19 SEA GREEN 0,255,128

20 BRIGHT CYAN 0,255,255

21 LIME 128,255,0

22 PASTEL GREEN 128,255,128

23 PASTEL CYAN 128,255,255

24 BRIGHT YELLOW 255,255,0

25 PASTEL YELLOW 255,255,128

26 BRIGHT WHITE 255,255,255

The RGB lookupvalue r(p) determines the actual colour of the pixel.

9.2.4 The pseudo MaPé format

My MaPé format is as followed: 4 Bytes magic word “MaP6é”. 32*4 bytes
(The Pawn: 29*4 bytes) index pointer (BIG endian). Afterwards the free
and bitstreams for the pictures.

9.3 Game and String sections in The Pawn

The CODE and the String2 sections in The Pawn are being Huffman En-
coded. To decode, the free starts at offset 1, the bit stream (MSB first)
at offset 129. Terminal symbols have bit 7 set. Four bytes are being com-
bined into three bytes in the same way as in chapter 5.2.

The game code can be found in the file PAWNT. The first string section is
in PAWNS, followed by PAWNZ2. The images are stored in the file PAWNA4,

54 CHAPTER 9. AMSTRAD CPC

9.4 The scrambled sections

Starting with releases of “The Guild of Thieves”, the game code and the
dictionary were scrambled. Since the Amstrad CPC had only a limited
amount of memory, some parts of the code were pre-loaded, and the
others read from the floppy disks when they were needed. This had an
impact on the design of the scrambler.

The first part of the code section was stored in Files ending with 1, the
second part in 6. When concatenated, they make up the CODE section
of the game.

9.4.1 FILE1, FILES8: Linear scrambled
The code section that starts in FILET and the dictionary in FILES (when

it was available), were freated to the same scrambling with a Pseudo
Random Bit Sequence.

The sequence s can be replicated with the following formula:

o = 0zx1803
s(0) = (o +256-0+0x29) mod 65536
s(G) = (s(j—1)+256-s(j — 1) + 0229) mod 65536

The sequence is being inifialized with 021803 and confinues as 0x1b2¢
024755 0x9c7e 0xlaa? 0xcldo.

Obviously, this is a sequence of 16 bit values. To descramble each Byte
b(y) with it, the higher and the lower bytes are being xored with it:

V(i) = (s(7) ® (s(j) >>8) @ b(j)) AOxf f

9.4.2 FILE 6: Block scrambling

Since the contents of FILE6 are being loaded in a randomized order,
it would have been inefficient to scramble them linearly as well. Thus,
each block of 128 bytes is given its own PRBS. The starfing value o of the
block is identical to the relative offset of the descrambled block within
the overall code section.

Thus, when the FILET is 024000 bytes in size, the first 128 Bytes are scram-
bled with ¢ = 024000, the next one with ¢ = 024080, afterwards ¢ =

9.4. THE SCRAMBLED SECTIONS 55

024100 and so forth. Note that the size of FILE1 changes from game to
game.

56

CHAPTER 9. AMSTRAD CPC

Chapter 10

Spectrum128/Spectrum+3
releases

The releases for the Spectrum shares some similarities with the Amstrad
CPC releases. Both can be found as DSK images, and both utilized the
CPM File system. However, the directory is stored in a different location.

10.1 Finding the directory

The directory is not on the first track. Instead, the first tfrack is reserved for
the boot loader, and starts with a 16(?) Bytes header:

Byte | Symbol | Description
Disk type
Number of sides
Number of tracks per side
Number of sectors per track
Indicator of sector size
Number of reserved tracks
Block size
Number of directory blocks
g gap Length (read/write)
gap length(format)
10..14 Reserved

15 Checksum

The actual number of bytes per sector A is

NV ONOCODNMNWN—O
>3 2 W\

A = 27+a
The actual number of bytes per block B is

B = 27+b

57

58 CHAPTER 10. SPECTRUM128/SPECTRUM+3 RELEASES

The directory is stored in sector d = A - r. Since the “Blocks” are calcu-
lated relatively to the directory, this offset needs to be added to the
blocks when reading the files.

10.2 The files

The files for the games have a different Prefix for each game, followed
by a number.

Prefix | Game

PAWN | The Pawn

GUILD | The Guild of Thieves

JINX Jinxter
CORR | Corruption
FILE Fish!

Myth

Note that Myth and Fish! share the same prefix.
The number determines the section of the game:

Number | Huffed Y/N | Role

The interpreter

The code section

The string2 sections (Huffman free)
The string1 section

The dictionary

The title screen(?)

Even “The Pawn” and “The Guild of Thieves” have the dictionary in a
separate file

OO WN—O0O
V<Z<<Z

Huffed files are to be decoded the same way as the dictionaries, as
described in chapter 5.2: The first byte denotes the size of the tree. Ter-
minal symbols have the highest bit set, and terminal symbols are only 6
bits wide. Therefore, 4 Symbols need to be combined to form 3 Bytes.

Chapter 11

Acorn Archimedes images

11.1 The RISC OS file system

RISC OS is a littfle endian system.

11.1.1 ADFS type D- Hugo

The magic word ‘Hugo’ can be found at offset 0x401.

11.1.2 Adfs type E- Nick

The magic word ‘Nick” can be found at offset 0x801.

Translating the indicator to an offset, using the allocation map

The main difference between ADFS type D and ADFS type E is the way
the offset within the disc is being calculated. The directory contains an
indicator (see below). In type E disks, the bytes 0x40..0x400 are used as
allocation map. The position of the indicator within this map determines
the offset within the disk image.

11.1.3 The directories

10 bytes flename, ending with Carriage Return 0x0d
4 bytes load address

4 bytes exec address

4 bytes length

3 bytes indicator

1 byte file type flags

59

60 CHAPTER 11. ACORN ARCHIMEDES IMAGES

11.2 Files

The name of the directory determines which game it actually is. The
following files can be extracted from the images:

F1 UNKNOWN
F2 An executable
F3 The ftitle screen
F4 UNKNOWN
F5 An executable

F6 * The code section
F7 * The dict section
F8 * The string2 section
F9 The string1 section
F10 The pictures

The files marked with the * have been packed with the same algorithm
as described in chapter 5.2.

11.3 Pictures

11.3.1 Separating the pictures

The format of the picturesis the same as the payload in the GFX1 format,
as descript in chapter 14. However, the index is missing. Additionally, the
pictures have been given a 48 byte header, used for improving the per-
formance of the Acorn Archimedes to render the pictures.

The header looks like this:
Position | Length | Description
0..15 16 Stipples

16..47 32 RGB values. (2 bytes each)

Bytes 16..19 always have the same RGB values: 00 00 07 77. This can be
used as a magic sequence to separate the pictures, and to reconstruct
the index.

11.3.2 Picture order in Jinxter

The pictures in Jinxter are in a different order than the other releases.
Here, the orderis 16,21,22,11,0,6,3,15,24,7,12,13,1,28,26,17.23,9,4,18,25,20,10,
8,19.14, 2.

Chapter 12

The AtariXL/Atari800 images

Aside from a 16 Byte header, the ATR images are plain images without
a section or other headers in between.

12.1

There is a bootloader within the first sector. At offset, Ox118 and 0x128
a huffran tree can be found. At 0x138 the bitstream starts. Non Termi-
nal symbols have bit 7 set. Non Terminal symbols are between 0 and
F. Two of them form a byte. Highest nibble first. Lowest nibble later. The

The bootloader

contents of this section is UNKNOWN

12.2 The game sections

The Pawn Guild Jinxter
Section | Disk Offset | Disk Offset | Disk Offset | Scrambled?
code]l 1 3890 | 1 3790 Yes
code?2 |1 3990 | 2 10| 2 10 Yes
stringl | 1 11310 | 2 c010 | 2 c710 No
string2 | 1 1c710 | 2 1b110 | 2 10710 No
dict 2 6490 Yes
12.2.1 Scrambled sections

The scrambler is identical to the one described in chapter 9.4,

12.2.2 Codel section

The code section starts with two bytes. One of them is the amount of
blocks to be descrambled. The other is the size (in bytes) in the last block

61

62 CHAPTER 12. THE ATARIXL/ATARIS00 IMAGES

of this section, since Run Length Encoding is applied and the block size
is not aligned to 256 bytes.

Run length encoding is applied ONLY to 00. After each 00, the next
byte’s value is equal to the amount of 00. For example 00 01 becomes
00. 00 02 becomes 00 00. and 00 04 becomes 00 00 00 00.

12.2.3 Code2 section

This part of the game code is being loaded dynamically. So run-length
encoding would be counter-productive. Thus, each 256 byte block is
being descrambled into exactly 256 byte code.

12.2.4 Dict section

Is 8704 bytes long.

12.2.5 Location of the Huffman tree

somewhere in the string section, the sequence 01 02 03 ?? 05 can be
found. This is the beginning of the huffman tree.

12.3 The pictures

Pictures are Huffman encoded. Each free starts with the tree size in
BRANCHES. BRANCHES are two bytes: Left and Right. The left is being
followed when the bit in the bitstream (MSB first) is =1. The right when it is
=0. Non-Terminal symbols have Bit 7 set. Terminal symbols are 6 bit wide
and have to be combined the same way as described in chapter 5.1,
Pictures for the Atari have a resolution of 160x152 pixels. There are 16
Bytes to determine the colours, albeit only 4 of those are being used.
After the first 16 decoded bytes comes the Run Length Encoding table,
BUT ONLY if the treesize is 3E.

The first byte determines the size of the RLE. lllegal values are 00 0T and
80. Those deactivate the Run Length Encoding.

The position of a BYTE within the Run Length Encoding table determines
the amount of repitions of the previous byte.

One byte holds 4 pixels. MSB first. Thus, a picture has only 4 colours.

IF THE RUN LENGTH ENCODING was used, every line needs to be XORed
with the one two lines above.

12.3. THE PICTURES

12.3.1

the RGB values

12.3.2 the location of the pictures

The Pawn

DISK2:
DISK2:
DISK2:
DISKZ2:
DISK2:
DISKZ2:
DISK2:

DISK2

0x00010,DISK2:
0x1d190,DISK2:
0x05210,DISK2:
0x11310,DISK2:
0x14190,DISK2:
0x06£90,DISK2:
0x1e510,DISK2:
:0x19e10,DISK2:

The Guild Of Thieves

DISK1:

DISK1
DISK1

DISK1:
DISK1:
DISKI1:
DISK1:
DISKI1:

0x1b310,DISK1:
:0x11d90,DISK1:
:0x11110,DISK1:
0x0edl10,DISK1:
0x0c690,DISK1:
0x0aal0,DISK1:
0x0bal0,DISK1:

0x14d90,0

The Guild Of Thieves

DISK1:
DISKI1:
:0x0e690,
0x10£f10,DISKI1:
0x14590,DISK1:
0x16d90,DISK1:
0x1a410,DISK1:

DISK1

DISK1:
DISK1:
DISKI1:
DISK1:
DISKI1:

0x08690,DISK1:

0x0c490,

0x1ce90,0

0x00a90,DISK2:
0x03310,DISK2:
0x05890,DISK2:
0x11£f10,DISK2:
0x14£f90,DISK2:
0x16510,DISK2:
0x18010,DISK2:

0x1la6l0

0x09690,DISKL1:
0x08990,DISK1:
0x08190,DISK2:
0x18490,DISKL1:
0x0e010,DISK1:
0x15910,DISKL1:
0x19210,DISK1:

0x09990,DISK1:

0,

0,DISK1:
0x11d10,DISK1:
0x15290,DISK1:
0x17f90,DISKL1:
0x1b910,DISK1:

0x01al0,DISK2:
0x04110,DISK2:
0x1£910,DISK2:
0x12e90,DISK2:
0x15790,DISK2:
0x17010,DISK2:
0x18600,DISK2:

0x14210,DISK2:
0x10090,DISK1:
0x1e010,DISK1:
0x1£f710,DISK2:
OxlealO,DISK1:
0x0cclO,DISK1:
0x1a810,DISK1:

0x0a690,DISK1:
0,DISK1:
0x0f210,DISK1:
0x12c10,DISK1:
0x15d10,
0x18810,DISK1:
0x1c510,

63

0x02410,
0x04al0,
0x06390,
0x13990,
OxleflO0,
0x1dd90,
0x18£f90,

0x1be90,
0x17490,
0x0de610,
0x1d190,
0x16c90,
0x09£90,
0x12b90,

0x0b390,
0x0d840,
0x10090,
0x13910,

0,
0x19590,

0,

64

CHAPTER 12. THE ATARIXL/ATARIS00 IMAGES

Chapter 13

Apple llI- .NIB format

13.1 NIB basics

The NIB format is an image of the Tracks on an Apple Il floppy disk. It
holds 35 tracks, containing 16 (or 17) sectors each.

13.1.1 Tracks

Here, a track is stored as an UNALIGNED SNAPSHOT, as a 6656 (=0x1a00)
byte block. Thus, the block needs to be interpreted as a ring buffer struc-
ture.

Bla... Track is round... synchronize to the beginning...
Three Preambles: DA AA 96 for the address header, DA AA AD for the

data header, DA AA EB for the epilogue.
13.1.2 Addr section

An address section is being started with the sequence DA AA 96. After-
wards, 8 bytes of payload follow, containing the following information:

e 2 Bytes volume number
e 2 Bytes tfrack number
o 2 Bytes sector number, special
e 2 Bytes checksum
To decoded 2 Bytes by and b, info the information y, one has to perform

y = ROLy(bo)AND(b;)

65

66 CHAPTER 13. APPLE II- .NIB FORMAT

Where ROL, is a rotation by 2 bits to the left.

The Volume number can be used to identify the game:

0x68 | The Pawn

0x69 | The Guild of Thieves
0x70 | Jinxter (Side A)

0x71 | Jinxter (Side B)

0x72 | Corrution, Disk 1
0x73 | Corrution, Disk 2
0x74 | Corrution, Disk 3

The sector number is actually interleaved, and can be deinterleaved ...
0x0, 0x7, Oxe, Ox6, Oxd, 0x5, Oxc, 0x4, Oxb, 0x3, Oxa, 0x2, 0x9, Ox1, Ox8, Oxf

13.1.3 Data section

After the address section, the data section is being heralded by the
sequence D5 AA AD.

The Data section is 343 bytes long. Each byte has a value between 0296
and 0z f f, and needs 1o be decoded into a 6 bit value first.
The substitution table S(b) is as followed:

+0x0 +0x1 +0x2 +0x3 +0x4 +0x5 +0x6 +0x7
0x96 | OxO0 0OxO1 0x02 0x03 0Ox04
0x%9e | 0x05 0Ox06
Oxaé6 | Ox07 0x08 0x09 OxO0A 0x0B
Oxae | OxOC 0Ox0D OxOE OxOF 0Ox10 Ox11
Oxbé6 | Ox12 0x13 Ox14 0x15 Ox16 0Ox17 0x18
Oxbe | 0x19 OxTA
Oxcé Ox1B Ox1C
Oxce | Ox1D OxI1E Ox1F
Oxdé6 | Ox20 Ox21 Ox22 0x23 0x24 0Ox25 O0x26
Oxde | Ox27 0x28 0x29
Oxeb6 | Ox2A 0Ox2B Ox2C 0x2D Ox2E Ox2F 0x30
Oxee | Ox31 0x32 0x33 0x34 0x35 0x36
Oxf6 | Ox37 0Ox38 Ox39 Ox3A 0x3B 0x3C 0x3D
Oxfe | Ox3E Ox3F

Thus, 0296 becomes 0z00, 0xb5 becomes 0z11 and so on.

In addition to this, each substituted byte s; needs to be XORed with the
previous one s;_1. SO, the first stage of decoding the bytes by, ..., b342 can
be performed with the following formula:

S = S(bo)
Sj = Sj_lXORS(bj)

13.2. PAYLOAD 67

The first 86 bytes form the LSB section. The next 256 bytes form the MSB
section. There is 1 byte padding at the end of the MSB section.

lo =504+a «€{0,...,85}
mpg = S86+8 EXS {0, ce ,255}

A byte dg in the data section can then be decoded from mg and [,
where a = 8 mod 86. Bit order 452301...

13.2 Payload

13.2.1 Magic words
One sector holds one of the magic words.

e THE PAWN (C) 1985,1986 MAGNETIC SCROLLS
e GUILD OF THIEVES (C) 1987 MAGNETIC SCROLLS
o JINXTER (C) 1987,1988 MAGNETIC SCROLLS

° CORRUPTION (C) 1988 MAGNETIC SCROLLS LTD

Those can be used to distinguish the games.

The next sector starts with the header to unhuff the emulation code:
2 Bytes Size of the decoded data (little Endian, in nibbles)

16 Bytes Left leafs
16 Bytes Right leafs
n Bytes Bit stream

13.2.2 Offsets

In the memorydump from the Bootloader of Corruption, in the mem-
ory of the Apple Il, there is a directory. Starting at 0x499a, there are the

68

CHAPTER 13. APPLE II- .NIB FORMAT

fracks. Starting at 0x49b9. If Bit 6 is set, the file is on Disk 2, Bit 7 set means

Disk 3, otherwise it is on Disk 1.

Entry Disk Track Sector Section
4000 2 0 0 Code 2
4BOE 2 B E String 1
0400 1 4 0 Code 1
590E 2 19 E String 2
0802 1 8 2 Dict
OAQ00 1 A 0 Picture 00
8000 3 0 0 Picture 0T

It is expected to have similiar directories in the other games’ bootload-

ers as well.

The following offsets within the denibbelized content have been found:

13.2. PAYLOAD

PAWN GUILD | JINXTER | CORRUPTION
Codel section
Disk Ox68 0x69 0x70 0x72
Offset | 0x4000 | 0x3900 0x8200 0x4000
Length 65536 65536 0x3300 0x4200
Scrambled Yes Yes Yes Yes
RLE No Yes Yes No
Code2 section
Disk Ox71 0x73
Offset 0x0000 0x0000
Length Oxcc00 Oxbbe00
Scrambled Yes Yes
RLE No No
Pivot 7 2
String1 sectionl
Disk Ox68 Ox69 Ox71 0x73
Offset | 0x12000 | Ox1200 | 0Oxcc00 Oxbel0
Length | Oxc0000 Oxf100 | Oxe000 0xe000
Scrambled No No No No
String2 section1
Disk 0x68 0x69 0x71 0x73
Offset | 0x1e000 | 0x21c00 | Ox1ac00 0x19e00
Length Oxb00 0xe00 0x6100 0x2100
Scrambled No No No No
Dict sectionl
Disk 0x70 0x72
Offset 0x06000 0x08200
Length 0x2200 Ox1e00
Scrambled No No
Bootloader | 0x01100 | 0x00a00 | 0x00a00 0x00a00
Directory () | OxIfoe | 0x076b [0x07b0 | 0x09b9

69

(™) The directory can be found AFTER the bootfloader code has been
huffman-decoded. The offset in this table is the offset within the unhuff

buffer.

Of fset =

Track - 021000 + Sector - 02100

13.2.3 Scrambled sections

The scrambler is identical to the one described in chapter 9.4,

Affer descrambling, those sections sometimes use Run Length Encod-
ing. In this case, the payload is broken into two parts. One Run Length
Encoded, one without.

70 CHAPTER 13. APPLE II- .NIB FORMAT

Length RLE part FF FF FF FF Non RLE part

The “length” is a 16 bit value (BIG endian), denoting the number of bytes
that encode the RLE part, to be loaded at boot time. The end marker
“FF FF FF FF* are 4 bytes that need to be skipped. The rest is the non RLE
part, to be loaded dynamically at runtime.

13.3 CORRUPTION, Pictures

The pictures for corruption are stored as Huffman trees with RLE encod-
ing of 0. Affer unhuffing, each picture is 16384 bytes big. The next 8192
bytes are a memdump of the Apple I AUXILLIARY memory between
0x2000 and Ox3FFF, the last 8192 bytes are the MAIN memory bank at
the SAME ADDRESS.

13.3.1 Location
Disk 1

Pictures can be found at the following offsefs:

Picture 00 0Ox0AQQO
Picture 02 0x0C300
Picture 04 0x0E400
Picture 06 0x10500
Picture 10 0x12400
Picture 14 0x14300
Picture 17 0x16500
Picture 20 0x18900
Picture 22 0x1ACO0
Picture 23 0Ox1CBOO

Disk 3

Pictures can be found at the following offsets:

13.3. CORRUPTION, PICTURES

Picture 01
Picture 03
Picture 05
Picture 07
Picture 08
Picture 09
Picture 11
Picture 12
Picture 13
Picture 15
Picture 16
Picture 18
Picture 19
Picture 21
Picture 24
Picture 25

0x00000
0x01D00
Ox03EOO
O0x05A00
0x07EQO
0x0A200
0x0C600
OxOEAQO
Ox10A00
O0x12A00
0x14C00
0x17000
0x19600
Ox1BAGO
Ox1DB00
Ox1FFOO

71

13.3.2 Apple ll basics

First of all, Apple Il graphics are WEIRD. Graphics are stored as 7 pixels
in 4 Bytes, spread across 2 memory banks, Auxiliary and Main Memory.
The lines are interleaved.

The Applell has 16 colours, one pixel is stored as 4 bits. Those 4 bits are
being spread across the two memory banks.

In other words: Let A = [ao ai as asz a4 as (16] and B = [bo b1 by b3 by b5 b6]
be two consecutive bytes in the AUXILIARY memory bank, and M =
[mo m1 ma ms my ms mg] ANA N = [ng n1 ne ng ng ns ng] be the corre-
sponding bytes in the MAIN memory bank at the same address.

Then, 7 pixels can be constructed like so:

PO = Jap a1 ag ag]
Pl = Ja4 a5 ag mo]
P2 = [mi mg m3 my]
P3 = [msmg by bi]
P4 = [by bs by bs]

P5 = [bg ng ni na|
P6 = [n3ng ns ng

Those are being franslated into the following palette:

CHAPTER 13. APPLE II- .NIB FORMAT

72
Colour Name RGB value
0000 BLACK 0.0,0 e
1000 DK BLUE 96,78,189 —
0100 DK GREEN 0,163, 96 —
1100 MED BLUE 20,207,253
0010 BROWN 96,114,3 —
1010 GREY2 156,156,156
0110 GREEN 20,245,60
1110 AQUA 114,255,208
0001 RED 227.,30,96 —
1001 VIOLET 255,68,253
0101 GREVY1 156,156,156
1101 LT BLUE 208,195,255
0011 ORANGE 255,106,60
1011 PINK 255,160,208
0111 YELLOW 208,221,141
1111 WHITE 255,255,255

Each line consists of 80 bytes: 40 in the AUX memory, and 40 in the MAIN

memory.

Here it comes: The lines are HEAVILY interleaved.

Line O
Line 1
Line 2
Line 3
Line 4
Line 5

Line 6
Line 7

0x2000
0x2400
0x2800
0x2C00
0x3000
0x3400

0x3800
0x3C00

Line 8
Line @
Line 10
Line 11
Line 12
Line 13

Line 14
Line 15

0x2100
0x2500
0x2900
0x2D00
0x3100
0x3500

0x3900
0x3D00

Line 16 0x2200

Line 32 0x2050

Line 63 0x3F00

Line 64
Line 65

Line 127
Line 128

0x2028
0x2428

Ox3F28
0x2050

Chapter 14

AMIGA Data format

Files on the disk are numbered: guild1, guild2, guild3....

guild1 is the bootloader. guild2 is the title image. guild3 is the game-
code, scrambled.

To descramble a buffer buf with the size bufsize, the following program
can be used:

for (i=0;i<5;i++)
{
for (j=0; j<bufsize-1; j++)
{
buf[j] “=buf[j+1];
}
}

With C being the cleartext and s being the scrambled ftext, the formula
is

4
Cj = Dsjn
k=0
The directory for the strings seems to start at byte Ox15F5A.

The files guild4, guildd, guildé.. are the pictures in the GFX1 format, as
described in chapter .

73

